Matematică, întrebare adresată de blackstone, 9 ani în urmă

Se consideră trapezul ABCD având AB || CD, AC intersectat BD = {O} și fie S1, S2, S3 ariile triunghiurilor AOB, BOC, COD. Să se demonstreze ca S2^2=S1•S3.

Răspunsuri la întrebare

Răspuns de bunicaluiandrei
7
BB'_|_AC    S1 = AO·BB'/2    S2 = OC·BB'/2      S1/S2 = AO/OC = B/b (din asemanarea ΔAOB cu ΔCOD)  ⇒ S2 = S1·b/B
DD'_|_AC      S3 = OC·DD'/2    S2 = OC·BB'/2    S3/S2 = DD'/BB' = b/B
S2 = S3·B/b
S2·S2 = S1·S3 ·b/B·B/b      S2² = S1·S3
Alte întrebări interesante