Se consideră un triunghi ABC, cu lungimile laturilor AB=c, AC=b și un punct D astfel încât AD (vector) = b• AB (vector) + c• AC (vector). Să se arate că semidreapta [AD este bisectoarea unghiului BAC.
Răspunsuri la întrebare
Răspuns de
67
[tex]|b\overrightarrow{AB}|=b|\overrightarrow{AB}|=bc\\
|c\overrightarrow{AC}|=b|\overrightarrow{AC}|=cb[/tex]
Din regula paralelogramului de adunare a vectorilor, vectorul AD este diagonala in paralelogramul determinat de vectorii bAB sc cAC. Dar am aratat mai sus ca cei doi vectori au acelasi modul deci, ei determina un romb. (AD este diagonala in romb deci este si bisectoare.
Cum vectorii AB si bAB, respectiv AC si cAC sunt coliniari, rezulta ca (AD este bisectoarea unghiului BAC.
Din regula paralelogramului de adunare a vectorilor, vectorul AD este diagonala in paralelogramul determinat de vectorii bAB sc cAC. Dar am aratat mai sus ca cei doi vectori au acelasi modul deci, ei determina un romb. (AD este diagonala in romb deci este si bisectoare.
Cum vectorii AB si bAB, respectiv AC si cAC sunt coliniari, rezulta ca (AD este bisectoarea unghiului BAC.
Alte întrebări interesante
Matematică,
9 ani în urmă
Matematică,
9 ani în urmă
Matematică,
9 ani în urmă
Matematică,
9 ani în urmă
Limba română,
9 ani în urmă
Matematică,
9 ani în urmă
Matematică,
9 ani în urmă