Matematică, întrebare adresată de fotachegabriel, 9 ani în urmă

Se da funcția f:R-România, f (x)=2x+6.Demonstrați ca funcția f este bijectiva.


GreenEyes71: f: R -> România ? Asta chiar e tare, trebuie să recunosc. Corectează te rog enunțul, mai ai circa 20 de minute.

Răspunsuri la întrebare

Răspuns de Chris02Junior
7
f(x) = 2x+6
V.D. ca este bijectiva, adica injectiva si surjectiva
Ca o prima observatie, se poate afirma ca graficul acestei functii este o dreapta, deci bijectivitatea este evidenta.
  O vom demonstra totusi, pentru frumusetea calculelor:
1. Injectivitate: fie x1≠x2, VD f(x1)≠f(x2):
f(x1)= 2x1+6
f(x2)= 2x2+6, si le scadem
----------------------
- : f(x1)-f(x2)= 2(x1-x2) ≠ 0, in ipoteza impusa x1≠x2, deci f = injectiva
-----------------------------------------------------------------------------------------------------
2. Surjectivitatea: VD ca ∀y∈codomeniului, Exista si este UNIC un x din domeniu a.i. y=f(x). Intr-adevar, ∀y, exista un unic x pentru care y=2x+6
-----------------------------------------------------------------------------------------------------
Din 1 si 2 ⇒ functia este bijectiva.
============================

GreenEyes71: V.D. fiind ?
GreenEyes71: V.D. = vom demonstra ?
Chris02Junior: da
Alte întrebări interesante