Se dau numerele naturale a si b. Impartind a la b obtinem restul 20. Impartind b la a obtinem restul 110. Aflati cele mai mici valori pentru a si b
Răspunsuri la întrebare
Răspuns de
3
Stim ca a nu este egal cu b, deoarece atunci ambele impartiri ar da catul 1 si restul 0
Deci raman doua cazuri: a<b sau a>b
1) a<b
Atunci a:b da catul 0 si restul egal cu deimpartitul
a:b = 0 rest 20
a = 20
b:20 = x rest 110
Dar restul nu poate fi mai mare decat impartitorul, deci nu exista solutii pentru b
2) a>b
Atunci b:a da catul 0 si restul egal cu deimpartitul
b:a = 0 rest 110
b = 110
a:110 = x rest 20
a = 110x+20
In enunt spune "cele mai mici valori pentru a si b"
Cel mai mic a necesita cel mai mic x
Cea mai mica valoare a lui x ar fi 0, dar atunci a=20 si am stabilit ca a este mai mare decat b, deci incercam urmatoarea valoare pentru x, adica 1, pentru care a=130 si verifica
Singura solutie (pentru cele mai mici a si b) este a=130 si b=110
Deci raman doua cazuri: a<b sau a>b
1) a<b
Atunci a:b da catul 0 si restul egal cu deimpartitul
a:b = 0 rest 20
a = 20
b:20 = x rest 110
Dar restul nu poate fi mai mare decat impartitorul, deci nu exista solutii pentru b
2) a>b
Atunci b:a da catul 0 si restul egal cu deimpartitul
b:a = 0 rest 110
b = 110
a:110 = x rest 20
a = 110x+20
In enunt spune "cele mai mici valori pentru a si b"
Cel mai mic a necesita cel mai mic x
Cea mai mica valoare a lui x ar fi 0, dar atunci a=20 si am stabilit ca a este mai mare decat b, deci incercam urmatoarea valoare pentru x, adica 1, pentru care a=130 si verifica
Singura solutie (pentru cele mai mici a si b) este a=130 si b=110
albatran:
m,-am gandit si eu la asta ...din pacate nu mi-a iesit demo riguroasa...felicitari!
Alte întrebări interesante
Fizică,
8 ani în urmă
Matematică,
8 ani în urmă
Latina,
8 ani în urmă
Limba română,
9 ani în urmă
Matematică,
9 ani în urmă
Limba română,
9 ani în urmă
Limba română,
9 ani în urmă
Limba română,
9 ani în urmă