simplificati fractiile algebrice urmatoare si stabiliti , dupa caz, domeniul de definitie
Răspunsuri la întrebare
Răspuns:
Explicație pas cu pas:
a)(x²-1)/(x²+x) = D=R/{-1,0}
=(x-1)(x+1)/x(x+1)=(x-1)/x
b)(x²+2x)/(x²-4)= D=R/{-2,2}
=x(x+2)/(x+2)(x-2)=x/(x-2)
c)(x²-x)/(x²-2x+1)= D=R/{1}
=x(x-1)/(x-1)²=x/(x-1)
d)(x²+2x+1)/(x²-1) = D=R/{-1,1}
=(x+1)²/(x+1))²(x-1)=(x+1)/(x-1)
e)(x²+x)/(x²+2x+1)= D=R/{-1}
x(x+1)/(x+1)²=x/(x+1)
f)(x²-3x)/(x²-6x+9)= D=R/{3}
=x(x-3)/(x-3)²=x/(x-3)
g)(x²+3x)/(x²-9)= D=R/{-3,3}
=x(x+3)/(x+3)(x-3)=x/(x-3)
h) (x²-4)/(x²-4x+4)= D=R/{2}
=(x-2)(x+2)/(x-2)²=(x+2)/(x-2)
i)(x²-4x+4)/(x²-4)= D=R/{-2,2}
=(x-2)²/(x+2)/(x-2)=(x-2)/(x+2)
j) (x²-25)/(x²-10x+25)= D=R/{5}
=(x-5)(x+5)/(x-5)²=(x+5)/(x-5)
k)(x²+6x+9)/(x²-9)= D=R/{-3,3}
=(x+3)²/(x+3)(x-3)=(x+3)/(x-3)
l)(x²+7x)/(x²-49)= D=R/{-7,7}
=x(x+7)/(x+7)(x-7)=x/(x-7)