Matematică, întrebare adresată de ĄłęxVłøğs, 8 ani în urmă

Stiind ca M(a;3) si N(1;2), determinați numărul natural a pentru care MN = radical din 17.

Răspunsuri la întrebare

Răspuns de 0000000
2
MN=√[(1-a)²+(2-3)²]
√17=√(1²+a²-2a+4+9-12)
√17=√(a²-2a+2) |²
17=a²-2a+2
a²-2a+2-17=0
a²-2a-15=0
a²-5a+3a-15=0
a(a-5)+3(a-5)=0
(a-5)(a+3)=0
I. a-5=0⇒a=5
II. a+3=0⇒a-3
a∈N⇒-3 nu convine

S={5}

0000000: Vezi ca am corectat, nu vazusem ca trebuie sa fie natural. Am scos -3
ĄłęxVłøğs: Ok
Răspuns de tiganasu
3
MN = \sqrt{(a ~ - ~1)^{2} + (3 ~-~ 2) ^{2} } = \sqrt{(a~ - ~1)^{2} ~+ ~1 } \Leftrightarrow \sqrt{(a ~- ~1) ^{2} ~+ ~1} = \sqrt{17} \Leftrightarrow {a}^{2}~ - ~2a + 2 = 17 \Leftrightarrow {a}^{2} ~- ~2a ~- ~15 = 0 \Leftrightarrow {a}^{2}~ - ~5a ~+~ 3a ~- ~15 = 0 \Leftrightarrow a(a ~- ~5) ~+ ~3(a ~- ~5) = 0 \Leftrightarrow (a ~- ~5)(a ~+ ~3) = 0, dar a + 3 ≠ 0 ⇒ a - 5 = 0 ⇒ a = 5.

ĄłęxVłøğs: De ce raport?
ĄłęxVłøğs: E gresit?
Chris02Junior: Nu, este OK. S-a raportat din greseala.
0000000: e corect
Alte întrebări interesante