Matematică, întrebare adresată de ffydfcjhokfdsappjo, 8 ani în urmă

Stiind ca sin (x) = \frac{4}{5} si cos (y) = \frac{3}{5} ; x,y ∈(0,\frac{\pi }{2}) sa se calculeze cos (x) + sin (y)

Răspunsuri la întrebare

Răspuns de alexandranechip34amj
0

\displaystyle x, y\in\left(0, \frac\pi2\right)\Rightarrow \sin x\geq0, \:\cos x\geq0,\:\sin y\geq0,\:\cos y\geq0\\\sin^2x+\cos^2x=1\Rightarrow \cos^2x=1-\sin^2x=1-\frac{16}{25}=\frac{9}{25}\Rightarrow |\cos x|=\frac35\\\text{Cum }\cos x\geq0\Rightarrow \cos x = \frac35\\\sin^2y+\cos^2y=1\Rrightarrow\sin^2y=1-\cos^2y=1-\frac{9}{25}=\frac{16}{25}\Rightarrow|\sin y|=\frac45\\\text{Cum }\sin y\geq0\Rightarrow \sin y = \frac45\\\cos x+\sin y=\frac35+\frac45=\frac75

Alte întrebări interesante