Studiind deformarea unui resort elastic cu constanta elastica k=20 N/m, cele două echipe realizează doua experimente având la dispoziție, pe lângă resort, rigle gradate și două mere care împreună cantaresct 300 g unul cu masa de două ori mai mare decât a celuilalt.
a) Ce masa are fiecare ?
b) Ce valoare a alungirii resortului ar trebui măsurată daca un capăt al resortului ar fi fixat și de celălalt capăt ar fi suspendat mărul mai greu ?
c) Cele două mere sunt așezate într-un vas care agățat de capătul liber alungește resortul delta L=40 cm . Cât cântărește vasul gol ? Se consideră accelerația gravitațională g= 10 N/kg
Răspunsuri la întrebare
Răspuns:
a) cele doua mere cântăresc, impreuna, 300 grame
știm ca un mar are masa m₁ de doua ori mai mare decât celălalt m₂
m₁ = 2m₂
m₁ + m₂ = 300 g
înlocuim m₁ cu 2 m₂
2m₂ + m₂ = 300 => 3 m₂ = 300 =>
m₂ = 300 : 3 = 100 grame
m₁ = 2 m₂ = 2 x 100 g = 200 grame
b) mărul cu masa mai mare este m₁ = 200 g = 0,2 kg [ 1 kg = 1000g ]
greutatea mărului este forța deformatoare si este egala cu forța elastica din resort
G = F = kΔl
k = constanta elastica = 20 N/m, Δl = alungirea = necunoscuta
Δl = F : k = G : k
Greutatea G = masa x g
masa = m₁ = 0,2 kg
g = acceleratia gravitationala = 10 N/kg
Δl = mg : k = 0,2 kg x 10 N/kg : 20 N/m = 0,1 m
alungirea este de 0,1 m = 10 cm
c) Greutatea vasului si a celor doua mere întinde resortul cu 40 cm = 0,4 m .
G = F elastica = kΔl
G = 20 N/m x 0,4 m = 8 Newton
știm ca G = mg , deci masa merelor si a vasului este
m = G : g = 8 N : 10 N/kg = 0,8 kg
mar₁ + mar₂ + m vas = 0,8 kg
mar₁ + mar₂ = 300 g = 0,3 kg
m vas = 0,8 kg - 0,3 kg = 0,5 kg
vasul gol cântărește 0,5 kg