Răspunsuri la întrebare
Răspuns de
1
[tex] \boxed{1}\quad \log_{\big2}4\ \textless \ \log_{\big 2}7\ \textless \ \log_{\big2}8 \Rightarrow 2\ \textless \ \log_{\big2}7\ \textless \ 3\Big|^{-1} \Rightarrow \\ \\ \Rightarrow \dfrac{1}{2} \ \textgreater \ \dfrac{1}{\log_{\big2}7}\ \textgreater \ \dfrac{1}{3} \Rightarrow \dfrac{1}{3} \ \textless \ \dfrac{1}{\log_{\big2}7}\ \textless \ \dfrac{1}{2} \\ \\ \boxed{2}\quad \log_{\big2}4\ \textless \ \log_{\big 2}7\ \textless \ \log_{\big2}8 \Rightarrow 2\ \textless \ \log_{\big2}7\ \textless \ 3 \Big|+1 \Rightarrow \\ \\[/tex]
albastruverde12:
Pai daca cere in intervalul (a,b), inseamna ca nu poate sa fie din R-(a,b)
Răspuns de
3
[tex]\it log_714 =log_77\cdot2 =log_77+log_72 =1+\dfrac{1}{log_27} \\\;\\ \\\;\\ log_{14}{28} =log_{14}{14\cdot2} =log_{14}14+log_{14}2=1+\dfrac{1}{log_2{14}}= \\\;\\ \\\;\\ =1+\dfrac{1}{log_2{2\cdot7}} =1+\dfrac{1}{1+log_27}[/tex]
Relația din enunț devine:
[tex]\it 1+\dfrac{1}{log_27} -1-\dfrac{1}{1+log_27} = \dfrac{1}{log_27} -\dfrac{1}{1+log_27} = \dfrac{1+log_27 -log_2 7}{log_27(1+log_2 7)} \\\;\\ \\\;\\ = \dfrac{1}{log_27(1+log_2 7)} [/tex]
Expresia aparține intervalului (1/12, 1/6), adică :
[tex]\it log_27 \ \textless \ log_28 \Rightarrow log_27\ \textless \ 3 \Rightarrow log_27(1+log_27) \ \textless \ 3\cdot(1+3) =12 \ \ (*) \\\;\\ log_27 \ \textgreater \ log_24 \Rightarrow log_27\ \textgreater \ 2 \Rightarrow log_27(1+log_27) \ \textgreater \ 2\cdot(1+2) =6 \ \ (**) \\\;\\ \\\;\\ (*),\ (**) \Rightarrow 6\ \textless \ log_27(1+log_27) \ \textless \ 12 \Leftrightarrow \dfrac{1}{12} \ \textless \ \dfrac{1}{log_27(1+log_27)}\ \textless \ \dfrac{1}{6} [/tex]
Alte întrebări interesante