Matematică, întrebare adresată de Alexandravert, 8 ani în urmă

Demonstrati~ca~n!\geq 2^{n}, n\geq 4.

Răspunsuri la întrebare

Răspuns de baiatul122001
2

Demonstram prin inductie matematica :P(n):n!≥2ⁿ,∀n≥4

1.Verificarea:P(4):4!≥2⁴<=>1*2*3*4≥2*2*2*2|:8<=>3≥2(A)

2.Demonstratia:P(k)->P(k+1),∀k≥4

fie v(P(k))=1∀k≥4

P(k):k!\geq 2^k,	\forall k \geq 4\\P(k+1):(k+1)!\geq 2^{k+1},\forall k \geq 4\\

_________________________\\_

(k+1)!\geq 2^{k+1},\forall k \geq 4&lt;=&gt;k!(k+1)\geq 2*2^k,\forall k \geq 4&lt;=&gt;k!\geq \frac{2*2^k}{k+1} (A),\forall k \geq 4\\=&gt;P(k)_&gt;P(k+1),\forall k \geq 4\\=&gt;v(P(n))=1.\forall n \geq 4\\


Alexandravert: Mulțumesc!
Rayzen: la P(k+1), de ce ai spus ca e adevarat k! >= (2*2^k)/(k+1) ?
E o inegalitate mult mai complicată decât cea inițială.
Răspuns de Rayzen
3

n!\geq 2^n,\quad n\geq 4\\ \\ \displaystyle \prod\limits_{k=1}^{n}k\geq \prod\limits_{k=1}^{n}2 \,\Leftrightarrow\\ \\ \Leftrightarrow\,1\cdot 2\cdot 3\cdot \prod\limits_{k=4}^{n}k\geq 2\cdot 2\cdot 2\cdot \prod\limits_{k=4}^{n}2\\ \Leftrightarrow \, \dfrac{3}{4}\prod\limits_{k=4}^{n}k\geq \prod\limits_{k=4}^{n}2

\displaystyle \\\diamond\,\,\textbf{Pentru }\,n = 4:\\ \\\dfrac{3}{4}\cdot 4\geq 2 \quad (A)\\ \\ \diamond\,\,\textbf{Pentru }\,n\geq 5:\\ \\ \dfrac{3}{4}\cdot 4\cdot \prod\limits_{k=5}^{n}k \geq 2\cdot \prod\limits_{k=5}^{n}2 \,\Leftrightarrow\,3\prod\limits_{k=5}^{n}k \geq 2 \prod\limits_{k=5}^{n}2\\\\\\ {\!}\left\{\begin{aligned}3&amp;\geq 2 \\ k \geq 2\Rightarrow \prod\limits_{k=5}^n k&amp;\geq \prod\limits_{k=5}^n 2\end{aligned}\right|\,\Rightarrow\,3\prod\limits_{k=5}^{n}k \geq 2 \prod\limits_{k=5}^{n}2\quad (A)

\Rightarrow\, n!\geq 2^n,\quad \forall n\geq 4


Alexandravert: Mulțumesc!
Rayzen: Cu drag!
Alte întrebări interesante