[tex]\fbox{AM 95*} $ \ Fie f : [0,1] \rightarrow \mathbb_{R}},\ \quad f(x) = \frac{e^x}{x+1} \\ \\ $ \ Verificati care inegalitate este adevarata: \\
\\ a) $ \ 1\leq \frac{1}{f(x)} \leq \frac{e}{2} \quad \quad \quad b) $ \ 1\leq \frac{1}{f(x)} \leq e \quad\quad\quad c) $ \ $ \ \frac{2}{e} \leq \frac{1}{f(x)} \leq 1 \\ \\ $ \ d) 1\leq f(x)\leq e \quad\quad\quad e) & \ \frac{1}{e}\leq f(x)\leq 1 \quad\quad\quad f) $ \ $ \frac{2}{e}\leq f(x)\leq 1 [/tex]
Este din culegerea pentru admitere la Universitatea Politehnica Timisoara, ajutati-ma va rog.
Răspunsuri la întrebare
Răspuns de
2
..................................
Anexe:

Rayzen:
Multumesc ! ! !!
Alte întrebări interesante
Franceza,
8 ani în urmă
Matematică,
8 ani în urmă
Limba română,
8 ani în urmă
Matematică,
9 ani în urmă
Limba română,
9 ani în urmă
Limba română,
9 ani în urmă
Limba română,
9 ani în urmă
Matematică,
9 ani în urmă