Matematică, întrebare adresată de Daniel998, 9 ani în urmă

 \int\ln(x+ \sqrt{x^2+1} ) \, dx
Am rezolvat pana am ajuns la x*ln(x+ \sqrt{x^2+1} )-arctgx*x- \int {arctgx} \, dx , ce mai pot face de aici ?

Răspunsuri la întrebare

Răspuns de Rayzen
3
 \int\limits {\ln (x+\sqrt{x^2+1})} \, dx  =  \int\limits {x'\cdot \ln (x+\sqrt{x^2+1})} \, dx= \\ \\ = x\cdot \ln (x+\sqrt{x^2+1})-\int\limits {x\cdot \big(\ln (x+\sqrt{x^2+1})\big)'} \, dx\overset{(*)}{=}\\   \\ $\Big(\quad\int\limits {\dfrac{1}{\sqrt{x^2+1}}} \, dx=\ln (x+\sqrt{x^2+1})+C\Big$ $ \rightarrow  $ este chiar formula$\quad \Big)$ \\ \\ \Leftrightarrow  \Big(\quad\big(\ln (x+\sqrt{x^2+1})\big)' = \dfrac{1}{\sqrt{x^2+1}}\quad \Big)

 \overset{(*)}{=}  x\cdot \ln (x+\sqrt{x^2+1})-\int\limits {x\cdot\dfrac{1}{\sqrt{x^2+1}} \, dx=$  \\ \\ $ = x\cdot \ln (x+\sqrt{x^2+1})  - \int\limits {\dfrac{x}{\sqrt{x^2+1}} \, dx=$ \\ \\ \\ $ = x\cdot \ln (x+\sqrt{x^2+1}) - \int\limits {\big(\sqrt{x^2+1}\big)'} \, dx= \\ \\ = x\cdot \ln (x+\sqrt{x^2+1}) -\sqrt{x^2+1}+C

\Rightarrow \boxed{\int\limits {\ln (x+\sqrt{x^2+1})} \, dx  =  x\cdot \ln (x+\sqrt{x^2+1}) -\sqrt{x^2+1}+C}
Alte întrebări interesante