Matematică, întrebare adresată de Mate19, 8 ani în urmă

 L= \lim_{n \to \infty} \frac{n^{n}}{(n+1)^{n}}

Răspunsuri la întrebare

Răspuns de Purva1405
4
Hey There!


The solution is in the image.


Hope it helps
Purva
Global Brainly Community
Anexe:

Mate19: Thank you so much!
Purva1405: You are welcome :)
Purva1405: Oh, Thanks for marking it as Brainliest :))))
Răspuns de EnglishzzBoi
0
\lim _{n\to \infty \:}\left(\frac{n^n}{\left(n+1\right)^n}\right) \\ \frac{n^n}{\left(n+1\right)^n}=\left(\frac{n}{\left(n+1\right)}\right)^n \\ =\lim _{n\to \infty \:}\left(\left(\frac{n}{n+1}\right)^n\right) \\\lim _{n\to \infty }\left(\left(\frac{n}{n+k}\right)^n\right)=\frac{1}{e^k} =\frac{1}{e^1}=\frac{1}{e}
Alte întrebări interesante