Matematică, întrebare adresată de aledan12, 8 ani în urmă

Trigonometrie de clasa a noua.
Demonstrati ca sunt egale:

Anexe:

Răspunsuri la întrebare

Răspuns de ModFriendly
5

\frac{1+sin^2\frac{5\pi}{12}}{1+cos^2\frac{5\pi}{12}}=\frac{6+\sqrt{3}}{6-\sqrt{3}}\\ \\ \Leftrightarrow (6-\sqrt{3})(1+sin^2\frac{5\pi}{12})=(6+\sqrt{3})(1+cos^2\frac{5\pi}{12})

\Leftrightarrow 6+6sin^2\frac{5\pi}{12}-\sqrt{3}-\sqrt{3}sin^2\frac{5\pi}{12}=6+6cos^2\frac{5\pi}{12}+\sqrt{3}+\sqrt{3}cos^2\frac{5\pi}{12} \ |-6

\Leftrightarrow 6sin^2\frac{5\pi}{12}-6cos^2\frac{5\pi}{12}=2\sqrt{3}+\sqrt{3}(sin^2\frac{5\pi}{12}+cos^2\frac{5\pi}{12})

\Leftrightarrow 6(sin^2\frac{5\pi}{12}-cos^2\frac{5\pi}{12})=2\sqrt{3}+\sqrt{3}\cdot 1 \ |:6

\Leftrightarrow sin^2\frac{5\pi}{12}-cos^2\frac{5\pi}{12}=\frac{3\sqrt{3}}{6} \ |\cdot (-1)

\Leftrightarrow cos^2\frac{5\pi}{12}-sin^2\frac{5\pi}{12}=-\frac{\sqrt{3}}{2}

\Leftrightarrow cos(2\cdot \frac{5\pi}{12})=-\frac{\sqrt{3}}{2}

\Leftrightarrow cos\frac{5\pi}{6}=-\frac{\sqrt{3}}{2}

 \frac{\pi}{2}< \frac{5\pi}{6}< \pi \Rightarrow \frac{5\pi}{6} \in \ cadranul \ II \Rightarrow cos \frac{5\pi}{6}=-cos(\pi-\frac{5\pi}{6})=-cos\frac{\pi}{6}

\Leftrightarrow -cos\frac{\pi}{6}=-\frac{\sqrt{3}}{2}, \ adevarat

Am \ folosit: \\ \\ \boxed{sin^2x+cos^2x=1}\\ \\ \boxed{cos^2x-sin^2x=cos2x}


aledan12: Ah, mersi!
aledan12: Dupa editare am inteles ce ai scis :))
aledan12: *scris
ModFriendly: cp cp )))
Răspuns de george100007
3

-----------------------------------------------------------------------

Anexe:

aledan12: Mersi mult!
george100007: cu placere!
Alte întrebări interesante