Triunghiul ABC, M=mijlocul laturii AB, N= mijlocul laturii AC, BN intersectat cu CM in punctul G. Demonstrati ca BG=2/3BN, GM=1/3BN, CG=2/3CM, GM=1/3CM
Răspunsuri la întrebare
Răspuns de
0
Avem triunghiul ABC, unde D, E si F sunt mijloacele laturilor iar G este centrul de greutate.
Desenam o linie paralela cu DC din punctul F care va intersecta AB in punctul Q.
Avem triunghiul ADC asemenea cu AQF.
Deci: AQ/AD=AF/AC si Q imparte segmentul AD in doua parti egale.
Fie P mijlocul segmentului DB. Rezulta ca: QD/DB=1/2
Triunghiul QBF este asemenea cu triunghiul DBG, deci: FG/GB=QD/DB=1/2
La fel si pentru celelalte mediane.
Deci, distanta de la un varf al triunghiului la centrul de greutate este dublul distantei de la centrul de greutate la latura opusa acelui varf.
Desenam o linie paralela cu DC din punctul F care va intersecta AB in punctul Q.
Avem triunghiul ADC asemenea cu AQF.
Deci: AQ/AD=AF/AC si Q imparte segmentul AD in doua parti egale.
Fie P mijlocul segmentului DB. Rezulta ca: QD/DB=1/2
Triunghiul QBF este asemenea cu triunghiul DBG, deci: FG/GB=QD/DB=1/2
La fel si pentru celelalte mediane.
Deci, distanta de la un varf al triunghiului la centrul de greutate este dublul distantei de la centrul de greutate la latura opusa acelui varf.
Alte întrebări interesante
Matematică,
8 ani în urmă
Limba română,
8 ani în urmă
Matematică,
8 ani în urmă
Matematică,
9 ani în urmă
Limba română,
9 ani în urmă
Matematică,
9 ani în urmă
Matematică,
9 ani în urmă