Matematică, întrebare adresată de nedelcuelena81, 8 ani în urmă

Triunghiului ABC este dreptunghic în A. Calculați perimetrul si aria triunghiului ABC dacă:

a)BC=10cm și sinB=3/5;b)AC=10cm și sin B=1/radical 2;c)AC=24cm și cos C=12/13


diana22123: Perimetru= AB+BC+AC= 24+10+ 10= 44 cm
Arie= cateta1 x cateta2/ 2= AB x AC /2 = 24 x 10/2 = 120

Răspunsuri la întrebare

Răspuns de stefaniamaya333
18

Răspuns:

a)

- sin B=3/5=AC/BC=AC/10, de unde rezulta ca AC=6cm

- teorema lui pitagora in trABC

AB la a 2a+AC la a 2a=BC la a 2a

AB la a 2a+36=100 /-36

AB la a 2a=64, de unde rezulta ca AB=8cm

-perimetrul este=6+8+10=14+10=24cm

-aria este=AB•AC/2(totul este supra 2)=6•8/2=48/2=24cm pătrați

b)

-sin B=1/rad din 2; rationalizam cu rad din 2 si vom obține ca sin B=rad din 2/2, de unde rezulta ca m(B)=45°

-trABC este dr si are un unghi de 45, rezultă că este dr is, însemna că carnetele sunt egale(AB=AC=10cm)

-teorema lui pitagora in trABC si obținem ca BC=10rad din 2 cm

-Perimetrul este=10+10+10rad din 2=20+10rad din 2=10(2+rad din 2)cm

-aria este=10•10\2=100/2=50cm pătrați

c)

-cos C=AC/BC=24/BC=12/13, de unde rezulta ca BC=26cm

-teorema lui pitagora in trABC si rezultă că AB=10cm

-perimetrul este=10+24+26=34+26=60cm

-aria este=AB•AC/2=10•24/2=10•12=120cm patrati

sper ca te-am ajutat

Alte întrebări interesante