URGENT !!!!
folosind metoda inductiei matematice sa se demonstreze ca pentru orice n e N* au loc egalitatile
Anexe:
Răspunsuri la întrebare
Răspuns de
1
Răspuns:
Explicație pas cu pas:
p(1)=1^2=(1*2*3) /6 adevarat
p(n) adevarat pt.n=1
p(n+1) =1^2+2^2+...+.n^2 +(n+1)^2=(n+1)(n+2)(2n+3)
tre sa aratam ca egalitatea de sus are loc adica
1^2+2^2+...(n+1)^2=1^2+2^2+....n^2+(n+1)^2=n(n+1)(2n+1)/6+(n+1)^2
(n+1)* ((n(2n+1)/6+(n+1))=(n+1)((2*(n^2)+n+6n+6))/6=(n+1)(2n^2+7n+6)/6
=(n+1)(n+2)(2n+3)/6
unde
2n^2+7n+6=(n+2)(2n+3)
rezulta ca
p(n+1) adevarata
Utilizator anonim:
te pup
Alte întrebări interesante
Matematică,
8 ani în urmă
Franceza,
8 ani în urmă
Matematică,
8 ani în urmă
Limba română,
9 ani în urmă
Matematică,
9 ani în urmă