URGENT PENTRU BACC<<<<
Se considera functia f(x)=(x-5)(x-4)(x-3)(x-2)+1
aratati ca f'(5)=6
Răspunsuri la întrebare
Răspuns:
Explicație pas cu pas:
(x - 5)(x - 4) = x^2 - 4x - 5x + 20 = x^2 - 9x + 20
(x - 3)(x - 2) = x^2 - 2x - 3x + 6 = x^2 - 5x + 6
(x^2 - 9x + 20)(x^2 - 5x + 6)
= x^4 - 5x^3 + 6x^2 - 9x^3 + 45x^2 - 54x + 20x^2 - 100x + 120
= x^4 - 14x^3 + 71x^2 - 154x + 120
f(x) = x^4 - 14x^3 + 71x^2 - 154x + 121
f'(x) = 4x^3 - 42x^2 + 142x - 154
f'(5) = 4*125 - 42*25 + 142*5 - 154
= 500 - 1050 + 710 - 154
= 6
Răspuns:
f(x) = (x-5)(x-4)(x-3)(x-2) + 1
derivata produsului de functii: (f₁·f₂·...fₙ)' = f₁'·f₂·...fₙ + f₁·f₂'·...fₙ + ... + f₁·f₂·...fₙ'
⇒ f'(x) = 1·(x-4)(x-3)(x-2) + (x-5)·1·(x-3)(x-2) + (x-5)(x-4)·1·(x-2) + (x-5)(x-4)(x-3)·1
f'(x) = (x-4)(x-3)(x-2) + (x-5)(x-3)(x-2) + (x-5)(x-4)(x-2) + (x-5)(x-4)(x-3)
f'(5) = (5-4)(5-3)(5-2) + 0 + 0 + 0 = 1·2·3 = 6
b)
notez t = (n-1)/(n-5) = (1-1/n)/(1-5/n)
evident: n -> ∞ => t -> (1-0)/(1-0) = 1
t = (n-1)/(n-5) = t*n-5t = n-1
⇒ n = (5t-1)/(t-1) = (5t-5+5-1)/(t-1)
⇒ n = 5 + 4/(t-1)
obs: Mai sus am folosit:
care se deduce astfel: