Matematică, întrebare adresată de icyblue405, 8 ani în urmă

URGENT!!! TI DAU O COROANA SI INIMA


te rog daca cine va poate sa ma ajute trebie urgent si ti dau un coroana, 5 stele so inima​

Anexe:

iul1k08: oke=)
icyblue405: :D

Răspunsuri la întrebare

Răspuns de andyilye
1

Explicație pas cu pas:

a)

a = \sqrt{ {( - \sqrt{3} )}^{2} } - {\Big( - \dfrac{2}{3}\Big)}^{ - 2} + \dfrac{9}{4} - 2 \sqrt{3} = \\

= \sqrt{3} - {\Big( - \dfrac{3}{2}\Big)}^{2} + \dfrac{9}{4} - 2 \sqrt{3}

= \sqrt{3} - \dfrac{9}{4} + \dfrac{9}{4} - 2 \sqrt{3} = \bf - \sqrt{3}

{a}^{2} = {\Big( - \sqrt{3} \Big)}^{2} = 3

{a}^{3} = {a}^{2} \cdot a = 3 \cdot ( -  \sqrt{3}) = - 3 \sqrt{3}

{a}^{4} = {{a}^{2}}^{2} = {3}^{2} = 9

{a}^{5} = {a}^{4} \cdot a = 9 \cdot ( -  \sqrt{3}) = - 9 \sqrt{3}

{a}^{6} = {a}^{4} \cdot {a}^{2} = 9 \cdot 3 = 27

{a}^{7} = {a}^{6} \cdot a = 27 \cdot ( - \sqrt{3}) = - 27 \sqrt{3}

{a}^{8} = {{a}^{4}}^{2} = {9}^{2} = 81

{a}^{9} = {a}^{8} \cdot a = 81 \cdot ( - \sqrt{3}) = - 81 \sqrt{3}

{a}^{10} = {a}^{8} \cdot {a}^{2} = 81 \cdot 3 = 243

b)

{a}^{ - 2} + {a}^{ - 4} + {a}^{ - 6} + {a}^{ - 8} = {( -  \sqrt{3})}^{ - 2} + {( -  \sqrt{3})}^{ - 4} + {( - \sqrt{3})}^{ - 6} + {( - \sqrt{3})}^{ - 8} = {(\sqrt{3})}^{ - 2} + {(\sqrt{3})}^{ - 4} + {(\sqrt{3})}^{ - 6} + {(\sqrt{3})}^{ - 8} = {\Big(\dfrac{1}{ \sqrt{3} }\Big)}^{2} + {\Big(\dfrac{1}{ \sqrt{3} }\Big)}^{4} + {\Big(\dfrac{1}{ \sqrt{3} }\Big)}^{6} + {\Big(\dfrac{1}{ \sqrt{3} }\Big)}^{8} = \dfrac{1}{({\sqrt{3})}^{2} } + \dfrac{1}{({\sqrt{3})}^{4} } + \dfrac{1}{({\sqrt{3})}^{6} } + \dfrac{1}{({\sqrt{3})}^{8} } = \dfrac{1}{3} + \dfrac{1}{9} + \dfrac{1}{27} + \dfrac{1}{81} \in \mathbb{Q} 

q.e.d.

Alte întrebări interesante