Matematică, întrebare adresată de ldsnf, 8 ani în urmă

URGENTT!!!
ex 7 b va roggg

Anexe:

Răspunsuri la întrebare

Răspuns de andyilye
3

Explicație pas cu pas:

a)

\sin(x + y) = \sin(x)\cos(y) + \cos(x)\sin(y) \\ \sin(x - y) = \sin(x)\cos(y) -  \cos(x)\sin(y) \\ \sin(x + y) +\sin(x - y) = 2\sin(x)\cos(y) \\

=  > \sin(x)\cos(y) =  \frac{1}{2} \left[ \sin(x + y) +\sin(x - y) \right] \\

b)

 \sin( \frac{x}{2}) \left[ \cos(x) +  \cos(2x) + \cos(3x) \right] =

=  \frac{1}{2} \left[ \sin( \frac{x}{2} + x)  + \sin( \frac{x}{2} - x) + \sin( \frac{x}{2} + 2x) + \sin( \frac{x}{2} - 2x) + \sin( \frac{x}{2} + 3x) + \sin( \frac{x}{2} - 3x)\right] \\

= \frac{1}{2} \left[ \sin( \frac{3x}{2})   + \sin(  - \frac{x}{2}) + \sin( \frac{5x}{2}) + \sin( -  \frac{3x}{2}) + \sin( \frac{7x}{2}) + \sin(  - \frac{5x}{2})\right]  \\

= \frac{1}{2} \left[ \sin( \frac{3x}{2}) - \sin( \frac{x}{2}) + \sin( \frac{5x}{2}) - \sin(\frac{3x}{2}) + \sin( \frac{7x}{2}) - \sin(\frac{5x}{2})\right]  \\

= \frac{1}{2} \left[ \sin( \frac{7x}{2}) - \sin( \frac{x}{2})\right] \\

c)

S = \cos( \frac{2\pi}{9}) + \cos(\frac{4\pi}{9}) + \cos(\frac{6\pi}{9}) + \cos(\frac{8\pi}{9}) \\

 \sin( \frac{\pi}{9} )  \times S = \sin( \frac{\pi}{9} )\left[ \cos( \frac{2\pi}{9}) + \cos(\frac{4\pi}{9}) + \cos(\frac{6\pi}{9}) + \cos(\frac{8\pi}{9})\right]  \\

= \frac{1}{2} \left[ \sin(\frac{\pi}{9} +  \frac{2\pi}{9}) + \sin(\frac{\pi}{9} -   \frac{2\pi}{9}) +\sin(\frac{\pi}{9} +  \frac{4\pi}{9}) + \sin(\frac{\pi}{9} -   \frac{4\pi}{9}) +\sin(\frac{\pi}{9} +  \frac{6\pi}{9}) + \sin(\frac{\pi}{9} -   \frac{6\pi}{9}) +\sin(\frac{\pi}{9} +  \frac{8\pi}{9}) + \sin(\frac{\pi}{9} -   \frac{8\pi}{9}) \right] \\

=  \frac{1}{2} \left[ \sin(\frac{3\pi}{9}) + \sin( - \frac{\pi}{9}) +\sin(\frac{5\pi}{9}) + \sin( - \frac{3\pi}{9}) +\sin(\frac{7\pi}{9}) + \sin( - \frac{5\pi}{9}) +\sin(\frac{9\pi}{9}) + \sin( - \frac{7\pi}{9}) \right]  \\

= \frac{1}{2} \left[ \sin(\frac{3\pi}{9}) -  \sin(\frac{\pi}{9}) +\sin(\frac{5\pi}{9})  - \sin( \frac{3\pi}{9}) +\sin(\frac{7\pi}{9})  - \sin(\frac{5\pi}{9}) +\sin(\frac{9\pi}{9}) - \sin(\frac{7\pi}{9}) \right] \\

= \frac{1}{2} \left[\sin(\pi) -  \sin(\frac{\pi}{9})\right] \\

=  > S =  \frac{ \left[\sin(\pi) -  \sin(\frac{\pi}{9})\right]}{2\sin( \frac{\pi}{9} )} \\

d)

S = \cos(x) + \cos(2x) + \cos(3x)  + ... + \cos(nx) \\

S \times 2\sin( \frac{x}{2}) = 2\sin( \frac{x}{2})\left[ \cos(x) + \cos(2x) + \cos(3x)  + ... + \cos(nx) \right]  \\

= \sin( \frac{x}{2} + x)  + \sin( \frac{x}{2} - x) + \sin( \frac{x}{2} + 2x) + \sin( \frac{x}{2} - 2x) + \sin( \frac{x}{2} + 3x) + \sin( \frac{x}{2} - 3x) + ... + \sin( \frac{x}{2} + nx) + \sin( \frac{x}{2} - nx) \\

=\sin( \frac{3x}{2})  + \sin( - \frac{x}{2}) + \sin( \frac{5x}{2}) + \sin(- \frac{3x}{2}) + \sin( \frac{7x}{2}) + \sin(-\frac{5x}{2}) + ... + \sin( \frac{(2n + 1)x}{2}) + \sin( -  \frac{(2n - 1)x}{2}) \\

= \sin( \frac{3x}{2}) - \sin(\frac{x}{2}) + \sin( \frac{5x}{2}) - \sin(\frac{3x}{2}) + \sin( \frac{7x}{2}) -  \sin(\frac{5x}{2}) + ... + \sin( \frac{(2n + 1)x}{2}) - \sin( \frac{(2n - 1)x}{2}) \\

=\sin( \frac{(2n + 1)x}{2}) - \sin(\frac{x}{2}) \\

S \times 2\sin( \frac{x}{2}) = \sin( \frac{(2n + 1)x}{2}) - \sin(\frac{x}{2})  \\

=  > S =  \frac{\sin( \frac{(2n + 1)x}{2}) - \sin(\frac{x}{2})}{2\sin( \frac{x}{2})} \\

e)

S = \cos(a) + \cos(a + r) + \cos(a + 2r)  + ... + \cos\left[ a + (n - 1)r \right] \\

S \times 2\sin( \frac{r}{2}) =2\sin( \frac{r}{2})\left[ \cos(a) + \cos(a + r) + \cos(a + 2r)  + ... + \cos\left[ a + (n - 1)r \right] \right] \\

=  2\sin( \frac{r}{2})\left[ \cos(r + a) + \cos(r - a) + \cos(r + a + r) + \cos(r - a - r) + \cos(r + a + 2r) + \cos(r - a - 2r) +   ... + \cos\left[ r + a + (n - 1)r \right] + \cos\left[ r - a - (n - 1)r \right]\right] \\

= \sin(\frac{r}{2} + a) + \sin(\frac{r}{2} - a) + \sin(\frac{r}{2} + a + r) + \sin(\frac{r}{2} - a - r) + \sin(\frac{r}{2} + a + 2r) + \sin(\frac{r}{2} - a - 2r) +   ... + \sin\left[\frac{r}{2} + a + (n - 1)r \right] + \sin\left[\frac{r}{2} - a - (n - 1)r \right] \\

= \sin(a + \frac{r}{2}) - \sin(a - \frac{r}{2}) + \sin(a + \frac{3r}{2}) - \sin(a + \frac{r}{2}) + \sin(a + \frac{5r}{2}) - \sin(a + \frac{3r}{2}) +   ... + \sin\left[a + \frac{(2n - 1)r}{2} \right] - \sin\left[a + \frac{(2n - 3)r}{2} \right] \\

= \sin\left[a + \frac{(2n - 1)r}{2} \right] - \sin(a - \frac{r}{2})\\

S \times 2\sin( \frac{r}{2}) = \sin\left[a + \frac{(2n - 1)r}{2} \right] - \sin(a - \frac{r}{2})\\

=  > S =  \frac{\sin\left[a + \frac{(2n - 1)r}{2} \right] - \sin(a - \frac{r}{2})}{2\sin( \frac{r}{2})} \\

Alte întrebări interesante