Matematică, întrebare adresată de imaria41, 8 ani în urmă

VA ROG AM NEVOIE PÂNĂ MÂINE!!!
1. {a,b,c} direct proportionale {2,3,4}
a+b+c= 180
2. {a,b} invers proportionale {3,7}
a+b=100
3. {x,y,z} invers proportionale {1,5; 2,4; 3}
4x-6y+z=6
4. {a,b,c,d} direct proportionale {0,2; 0,5; 0,(3);
0,(6)}
3a-c+d-b=13​

Răspunsuri la întrebare

Răspuns de martaspinu18
0

1. {a,b,c} d.p. {2,3,4}

 \frac{a}{2}  =  \frac{b}{3}  =  \frac{c}{3} = k

k-coeficient de proportionalitate

 \frac{a}{2}  = k =  > a = 2k

 \frac{b}{3}  = k =  > b = 3k

 \frac{c}{4}  = k =  > c = 4k

a+b+c= 180

2k+3k+4k=180

9k=180

k=20

a=2k=>a=2×20=>a=40

b=3k=>b=3×20=>b=60

c=4k=>c=4×20=>c=80

2. {a,b} i.p. {3,7}

3a=7b=k

3a = k =  > a =  \frac{k}{3}

7b = k =  > b =  \frac{k}{7}

a+b=100

 \frac{k}{3}  +  \frac{k}{7}  = 100 \\ aduci \: la \: acelasi \: numitor -  > 21 \\  \frac{7k}{21}  +  \frac{3k}{21}  = 100 \\  \frac{10k}{21}  = 100 \\ 10k = 21 \times 100 \\ 10k = 2100 \\ k = 2100 \div 10 \\ k = 210

a =  \frac{k}{3}  =  > a =  \frac{210}{3}  = 70

b =  \frac{k}{7}  =  > b =  \frac{210}{7} = 30

3. {x,y,z} i.p.{1,5; 2,4; 3}

1.5 =  \frac{15}{10}  =  \frac{3}{2}  \\ 2.4 =  \frac{24}{10}  =  \frac{12}{5}

 \frac{3}{2}  \times x =  \frac{12}{5}  \times y = 3z = k \\  \frac{3x}{2}  =  \frac{12y}{5}  = 3z = k

 \frac{3x}{2}  = k =  > 3x = 2k =  > x =  \frac{2k}{3}  \\  \frac{12y}{5}  = k =  > 12y = 5k =  > y =  \frac{5k}{12}  \\ 3z = k =  > z =  \frac{k}{3}

4x-6y+z=6

4 \times  \frac{2k}{3}  - 6 \times  \frac{5k}{12}  +  \frac{k}{3}  = 6 \\  \frac{8k}{3}  -  \frac{30k}{12}  +  \frac{k}{3}  = 6 \\  \frac{8k}{3}  -  \frac{5k}{2}  +  \frac{k}{3}  = 6 \\  \frac{9k}{3}  -  \frac{5k}{2}  = 6 \\ aduci \: la \: acelasi \: numtor \\  \frac{18k}{6}  -  \frac{15k}{6}  = 6 \\  \frac{3k}{6}  = 6 =  > 3k = 6 \times 6 =  > \\  3k = 36 =  > k = 12

x =  \frac{2k}{3}  =  \frac{2 \times 12}{3}  =  \frac{24}{3}  = 8

y =  \frac{5k}{12}  =  \frac{5 \times 12}{12}  = 5

z =  \frac{k}{3}  =  \frac{12}{3}  = 4

Alte întrebări interesante