Matematică, întrebare adresată de Exalvaros1234, 8 ani în urmă

Va rog dau coroana!!!
Să se arate că Nr x=[(2^5)^3:(2^3)^4+2^10:(3•2^5+2^5)]•(2^13)^5 este cubul unui Nr natural Va rog daca se poate pe o foaie!

Răspunsuri la întrebare

Răspuns de 102533
3

Răspuns:

X = (2²³)³

Explicație pas cu pas:

X = [(2⁵)³ : (2³)⁴ + 2¹⁰: (3•2⁵ + 2⁵)] • (2¹³)⁵ = a³  ? , a ∈ N

_________________

Ne folosim de formulele :

(mᵃ)ᵇ = mᵃ·ᵇ   ;  (mᵃ • mᵇ) = mᵃ⁺ᵇ ; (mᵃ : mᵇ) = mᵃ⁻ᵇ

_______________

X = {2⁵ˣ³ : 2³ˣ⁴ + 2¹⁰ : [2⁵•(3+1) } • 2¹³ˣ⁵

X = [2¹⁵ : 2¹² + 2¹⁰:(2⁵•4) ] •2⁶⁵

X = [2¹⁵⁻¹² + 2¹⁰: 2⁵⁺²] •2⁶⁵

X = (2³ + 2¹⁰⁻⁷)•2⁶⁵

X = (2³+2³)•2⁶⁵

X = 2³•2•2⁶⁵

X = 2³⁺¹⁺⁶⁵ = 2⁶⁹

X = (2²³)³

X este cubul numarului natural 2²³


Exalvaros1234: Ms mult :-D
Exalvaros1234: O să aștept până îmi apare ca să dau coroana ^_^
Exalvaros1234: Dar am o intrebare
Exalvaros1234: De ce ai pus 2^5•4 și ai făcut 2^5+2
102533: 4 = 2^2 ; 2^5x2^2 = 2^(5+2) = 2^7
Exalvaros1234: A ok ms
Alte întrebări interesante