Va rog explicatimi aceste exerciti cum se fac <>_<> sin(
-x)+sin(
+x)+2cos(π-x) =0 si sin²(
-x)+2cos(x-
)=3 ce formule si cum se rezolva acest exercitiu plz raman dator
Eu lucrez acum la problema ta, apoi iti voi da cateva explicatii pe "inbox" despre cercul trigonometric.
Răspunsuri la întrebare
Răspuns de
1
Ecuatia 1:
![sin( \frac{\pi}{2}-x)+sin( \frac{\pi}{2}+x)+2cos(\pi-x)=0 \\ \text{aducem la primul cadran: } \\ sin( \frac{\pi}{2}-x) = cos\,x \\ sin( \frac{\pi}{2}+x)=cos\,x \\ cos(\pi-x)=-cos\,x \\ =\ \textgreater \ \;\;\;cos\,x+cos\,x+2(-cos\,x)=0 \\ 2cos\,x-2cos\,x=0 \\ 0=0 \\ =\ \textgreater \ \text{Egalitatea nu depinde de x} \\ =\ \textgreater \ \;\text{x \;poate lua orice valoare} sin( \frac{\pi}{2}-x)+sin( \frac{\pi}{2}+x)+2cos(\pi-x)=0 \\ \text{aducem la primul cadran: } \\ sin( \frac{\pi}{2}-x) = cos\,x \\ sin( \frac{\pi}{2}+x)=cos\,x \\ cos(\pi-x)=-cos\,x \\ =\ \textgreater \ \;\;\;cos\,x+cos\,x+2(-cos\,x)=0 \\ 2cos\,x-2cos\,x=0 \\ 0=0 \\ =\ \textgreater \ \text{Egalitatea nu depinde de x} \\ =\ \textgreater \ \;\text{x \;poate lua orice valoare}](https://tex.z-dn.net/?f=sin%28+%5Cfrac%7B%5Cpi%7D%7B2%7D-x%29%2Bsin%28+%5Cfrac%7B%5Cpi%7D%7B2%7D%2Bx%29%2B2cos%28%5Cpi-x%29%3D0+%5C%5C+%5Ctext%7Baducem+la+primul+cadran%3A+%7D+%5C%5C+++++++++++++++++++sin%28+%5Cfrac%7B%5Cpi%7D%7B2%7D-x%29+%3D+cos%5C%2Cx+%5C%5C+sin%28+%5Cfrac%7B%5Cpi%7D%7B2%7D%2Bx%29%3Dcos%5C%2Cx+%5C%5C+cos%28%5Cpi-x%29%3D-cos%5C%2Cx+%5C%5C+%3D%5C+%5Ctextgreater+%5C+%5C%3B%5C%3B%5C%3Bcos%5C%2Cx%2Bcos%5C%2Cx%2B2%28-cos%5C%2Cx%29%3D0+%5C%5C+2cos%5C%2Cx-2cos%5C%2Cx%3D0+%5C%5C+0%3D0+%5C%5C+%3D%5C+%5Ctextgreater+%5C++%5Ctext%7BEgalitatea+nu+depinde+de+x%7D+%5C%5C+%3D%5C+%5Ctextgreater+%5C+%5C%3B%5Ctext%7Bx+%5C%3Bpoate+lua+orice+valoare%7D+)
Ecuatia 2:
![sin^2(990^o-x)+2cos(x-360^o)=3 \\ \text{Aducem la primul cadran:} \\ sin(990^o-x)=sin(360^o+ 360^o+270^o-x)= \\ =sin(360^o+270^o-x) =sin(270^o-x)=-cos\,x \\ cos(x-360^o)=cos\,x \\ \\ (-cos\,x)^2 + 2cos\,x=3 \\ cos^2x+2cos\,x-3=0 \\ Substitutie:\;\;\;\;z=cos\,x \\ z^2+2z-3=0 \\ z_{12}= \frac{-2 \;\pm\; \sqrt{4+12} }{2} = \frac{-2 \;\pm\; \sqrt{16}}{2} = \frac{-2 \;\pm\; 4}{2} =-1 \;\pm\; 2 \\ z_1 = -1+2=1 \;\;\;=\ \textgreater \ \;\;\;cos\,x=1\;\;\;=\ \textgreater \ \;\;\;x=0+2k\pi \\ z_2=-1-2=-3\;\;\; cos\,x=-3 \;\;\; (imposibil) sin^2(990^o-x)+2cos(x-360^o)=3 \\ \text{Aducem la primul cadran:} \\ sin(990^o-x)=sin(360^o+ 360^o+270^o-x)= \\ =sin(360^o+270^o-x) =sin(270^o-x)=-cos\,x \\ cos(x-360^o)=cos\,x \\ \\ (-cos\,x)^2 + 2cos\,x=3 \\ cos^2x+2cos\,x-3=0 \\ Substitutie:\;\;\;\;z=cos\,x \\ z^2+2z-3=0 \\ z_{12}= \frac{-2 \;\pm\; \sqrt{4+12} }{2} = \frac{-2 \;\pm\; \sqrt{16}}{2} = \frac{-2 \;\pm\; 4}{2} =-1 \;\pm\; 2 \\ z_1 = -1+2=1 \;\;\;=\ \textgreater \ \;\;\;cos\,x=1\;\;\;=\ \textgreater \ \;\;\;x=0+2k\pi \\ z_2=-1-2=-3\;\;\; cos\,x=-3 \;\;\; (imposibil)](https://tex.z-dn.net/?f=sin%5E2%28990%5Eo-x%29%2B2cos%28x-360%5Eo%29%3D3+%5C%5C+%5Ctext%7BAducem+la+primul+cadran%3A%7D+%5C%5C+sin%28990%5Eo-x%29%3Dsin%28360%5Eo%2B+360%5Eo%2B270%5Eo-x%29%3D+%5C%5C+%3Dsin%28360%5Eo%2B270%5Eo-x%29+%3Dsin%28270%5Eo-x%29%3D-cos%5C%2Cx+%5C%5C+cos%28x-360%5Eo%29%3Dcos%5C%2Cx+%5C%5C++%5C%5C+%28-cos%5C%2Cx%29%5E2+%2B+2cos%5C%2Cx%3D3+%5C%5C+cos%5E2x%2B2cos%5C%2Cx-3%3D0+%5C%5C+Substitutie%3A%5C%3B%5C%3B%5C%3B%5C%3Bz%3Dcos%5C%2Cx+%5C%5C+z%5E2%2B2z-3%3D0+%5C%5C++z_%7B12%7D%3D+%5Cfrac%7B-2+%5C%3B%5Cpm%5C%3B+%5Csqrt%7B4%2B12%7D+%7D%7B2%7D+%3D++%5Cfrac%7B-2+%5C%3B%5Cpm%5C%3B+%5Csqrt%7B16%7D%7D%7B2%7D+%3D+%5Cfrac%7B-2+%5C%3B%5Cpm%5C%3B+4%7D%7B2%7D+%3D-1++%5C%3B%5Cpm%5C%3B+2+%5C%5C+z_1+%3D+-1%2B2%3D1++%5C%3B%5C%3B%5C%3B%3D%5C+%5Ctextgreater+%5C+%5C%3B%5C%3B%5C%3Bcos%5C%2Cx%3D1%5C%3B%5C%3B%5C%3B%3D%5C+%5Ctextgreater+%5C+%5C%3B%5C%3B%5C%3Bx%3D0%2B2k%5Cpi++%5C%5C+z_2%3D-1-2%3D-3%5C%3B%5C%3B%5C%3B+cos%5C%2Cx%3D-3++%5C%3B%5C%3B%5C%3B+%28imposibil%29)
Ecuatia 2:
Alte întrebări interesante
Engleza,
9 ani în urmă
Matematică,
9 ani în urmă
Matematică,
9 ani în urmă
Matematică,
9 ani în urmă
Limba română,
10 ani în urmă
Limba română,
10 ani în urmă
si spune-mi daca ai auzit de"cercul trigonometric" si de "aducerea la cadranul 1"