Matematică, întrebare adresată de vecseiandras2, 9 ani în urmă

Va rog !!!
f: D -> R ; f(x)= ln(2x+3)
Calculati \lim_{x \to \33} \frac{f(x) - f(3)}{x-3}

Răspunsuri la întrebare

Răspuns de Rayzen
2

f(x) = \ln(2x+3)

f'(x) = \dfrac{(2x+3)'}{2x+3} = \dfrac{2}{2x+3}

\lim\limits_{x\to 3}\dfrac{f(x)-f(3)}{x-3}\overset{\frac{0}{0}(L'H.)}{=} \lim\limits_{x\to 3}\dfrac{\left[f(x)-f(3)\right]'}{(x-3)'}=

= \lim\limits_{x\to 3}\dfrac{f'(x) - 0}{1-0} = \lim\limits_{x\to 3}f'(x) = f'(3) = \dfrac{2}{2\cdot 3+3} =

= \boxed{\dfrac{2}{9}}


vecseiandras2: Multumesc mult!
Rayzen: Cu plăcere!
Alte întrebări interesante