Matematică, întrebare adresată de emmyspc, 9 ani în urmă

va rog mult punctul d de la 2

Anexe:

albatran: nu neapoarta tie, cat invataturii ( "music is its own reward" a declarat Sting la o premiere acum cativa ani..daca esti asa buna, BRAVO, 9,97 esti supertare sigur iti place sa spui si tu altora..o sa vezi, pe masura ce cresti, vei simti tot mai mult asta..
albatran: pai sa ma mai intrebi , baga si tu o cerere de prietenie ca altii/altele nu s-au jenat
albatran: o sa te ajut mult la geome in spatiu, eu sunt inginer de formatie
albatran: pa, ne vedem la urmatoarea problema, mai usoara sper
emmyspc: sunteti un om foarte inteligent,va multumesc din suflet si va urez toate cele bune!
albatran: mersi asemenea, fata bine crescuta; uite aici ceva cu adevarat fascinant pt toti care invata ; in intervalul (0,1) sunt "tot atatea" numere reale cat in intervalul (1, infinit) ; pe ASTA se bazeaza problema respectiva si ASTA stie profesorul care a compus problema; care poate a invatat asta cand era de varsta voastra, poate mai tarziu (ca mine);
albatran: nu stiu cat de "corect" sau didactic este sa va dea o problema peste ce ati invatat voi; probabil ca se urmareste "fortarea" gandirii ceea ce poate fi un lucru bun
albatran: in intervalui (0;1/4) sunt "la fel de multe" numere reale ca in (4 , infinit) a.i. fiecarui x din (0;1/4) ii corespunde un 1/x din infinit) si reciproc: fiecarui x din (4,infinit) ii corespunde un 1/x din (0;1/4)
albatran: analog si cu (-1/4;0) si (-infinit;-4)
albatran: in problema perechile de intervale sunt reunite ; adica (-1/4;1/4)\{0} e e fapt (-1/4;0)U(0;1/4) carora le 'corespunde" reuniunea (-infinit, -4)U(4;infinit) asta e tot

Răspunsuri la întrebare

Răspuns de albatran
1
M=[-4;4]
trebuie ca 1/x∉[-4,4]
din considerente de simetrie (si de simplificare a calculului) vom lua numai valorile pozitive, apoi vom extinde interbavalul
deci 1/b>4
1/b>4/1
1-4b>0
1>4b
4b<1
b<1/4
cel mai mare numar pozitiv este 1/4, cerinta

 intradevar pt x∈(-1/4, 1/4)\{0} 1/x∉[-4;4]=M
va fi fie mai mare decat 4, fie mai mic decat -4
pti sa verici de ex cu 1/5<1/4
x ∈(-1/5;1/5)\{0} 1/x ∈(-∞;-5)∪ (5, ∞) deci nu va apartine  lui M
idem pt 1/6<1/4
x∈(-1/6;1/6}\{0}, 1/x∈(-∞;-6)∪(6;∞)
sau cu 1/6<1/4
Alte întrebări interesante