Matematică, întrebare adresată de antoniagbratu, 8 ani în urmă

va rog sa imi rezolvati rapid acest ex!​

Anexe:

Răspunsuri la întrebare

Răspuns de pav38
60

Răspuns: Ai rezolvarea mai jos                 

Explicație pas cu pas:

Buna!

Punctul a)

\bf a = \bigg\{ \bigg[\Big(2^{4} \Big)^{3}: \Big(2^{2} \Big)^{2}\cdot\Big(2^{6} \Big)^{2}\bigg]^{2} :\Big(2^{8} \Big)^{4}\bigg\}^{6}:\Big(-2^{23} \Big)^{2}

\bf a =\bigg[\Big(2^{4\cdot3}: 2^{2\cdot 2}\cdot2^{6\cdot 2}\Big)^{2} :2^{8\cdot 4}\bigg]^{6}:\Big(2^{23} \Big)^{2}

\bf a =\bigg[\Big(2^{12}: 2^{4}\cdot2^{12}\Big)^{2} :2^{32}\bigg]^{6}:2^{23\cdot2}

\bf a =\bigg[\Big(2^{12-4+12}\Big)^{2} :2^{32}\bigg]^{6}:2^{46}

\bf a =\bigg[\Big(2^{20}\Big)^{2} :2^{32}\bigg]^{6}:2^{46}

\bf a =\bigg(2^{20\cdot 2} :2^{32}\bigg)^{6}:2^{46}        

\bf a =\Big(2^{40-32} \Big)^{6}:2^{46}

\bf a =\Big(2^{8} \Big)^{6}:2^{46}

\bf a =2^{8\cdot 6}:2^{46}

\bf a =2^{48}:2^{46}

\bf a =2^{48-46}

\pink{\bf \boxed{\bf a =2^{2}\longrightarrow Patrat~perfect}}

La b îmi iese un număr f mare si anume: 3¹⁹⁴/2¹⁹², dar il scriu așa

\bf b = \bigg\{ \bigg[\bigg(\dfrac{3}{2} \bigg)^{3}\bigg]^{10}: \bigg[\bigg(-\dfrac{2}{3} \bigg)^{4}\bigg]^{6}\cdot \bigg(\dfrac{9}{4} \bigg)^{2}\bigg\}^{4}:\bigg(\dfrac{3}{2} \bigg)^{38}\cdot 4

\bf b = \bigg\{ \bigg[\bigg(\dfrac{3}{2} \bigg)^{3\cdot 10}: \bigg[\bigg(\dfrac{2}{3} \bigg)^{4}\bigg]^{6}\cdot \bigg[\bigg(\dfrac{3}{2}\bigg)^{2} \bigg]^{2}\bigg\}^{4}:\bigg(\dfrac{3}{2} \bigg)^{38}\cdot 2^{2}          

\bf b = \bigg[\bigg(\dfrac{3}{2} \bigg)^{30}: \bigg(\dfrac{2}{3} \bigg)^{4\cdot 6}\cdot \bigg(\dfrac{3}{2}\bigg)^{2\cdot 2}\bigg]^{4}:\bigg(\dfrac{3}{2} \bigg)^{38}\cdot 2^{2}

\bf b = \bigg[\bigg(\dfrac{3}{2} \bigg)^{30}: \bigg(\dfrac{2}{3} \bigg)^{24}\cdot \bigg(\dfrac{3}{2}\bigg)^{4}\bigg]^{4}:\bigg(\dfrac{3}{2} \bigg)^{38}\cdot 2^{2}

\bf b = \bigg[\bigg(\dfrac{3}{2} \bigg)^{30}: \bigg(\dfrac{3}{2} \bigg)^{-24}\cdot \bigg(\dfrac{3}{2}\bigg)^{4}\bigg]^{4}:\bigg(\dfrac{3}{2} \bigg)^{38}\cdot 2^{2}

\bf b = \bigg[\bigg(\dfrac{3}{2} \bigg)^{30-(-24)+4}~\bigg]^{4}:\bigg(\dfrac{3}{2} \bigg)^{38}\cdot 2^{2}

\bf b = \bigg[\bigg(\dfrac{3}{2} \bigg)^{30+24+4}~\bigg]^{4}:\bigg(\dfrac{3}{2} \bigg)^{38}\cdot 2^{2}

\bf b = \bigg[\bigg(\dfrac{3}{2} \bigg)^{58}~\bigg]^{4}:\bigg(\dfrac{3}{2} \bigg)^{38}\cdot 2^{2}

\bf b = \bigg(\dfrac{3}{2} \bigg)^{58\cdot4}:\bigg(\dfrac{3}{2} \bigg)^{38}\cdot 2^{2}

\bf b = \bigg(\dfrac{3}{2} \bigg)^{232}:\bigg(\dfrac{3}{2} \bigg)^{38}\cdot 2^{2}

\bf b =\dfrac{3^{232}}{2^{232}}~:~\dfrac{3^{38}}{2^{38}} \cdot 2^{2}

\bf b =\dfrac{\not3^{232}}{\not2^{232}}~\cdot~\dfrac{\not2^{38}}{\not3^{38}}~ \cdot ~\not2^{2}

\bf b =\dfrac{3^{232-38}}{2^{232-38-2}}

\bf b =\dfrac{3^{194}}{2^{192}}

\bf b =\dfrac{\Big(3^{97}\Big)^{2}}{\Big(2^{96}\Big)^{2}}

\red{\boxed{\bf b =\Bigg(\dfrac{3^{97}}{2^{96}}\Bigg)^{2}\longrightarrow Patrat~ perfect}}

Punctul b)

\bf\purple{ \bf a^{b} = 4^{\bigg(\dfrac{3^{97}}{2^{96}}\bigg)^{2}} \implies Patrat ~perfect}

\bf \green{ b^{a} = \bigg[ \bigg(\dfrac{3^{97}}{2^{96}}\bigg)^{2}\bigg]^{4} \implies Patrat ~perfect}

Bafta multa!

Răspuns de mama80
1

Răspuns:

 

Explicație pas cu pas:

Anexe:
Alte întrebări interesante