Matematică, întrebare adresată de ramonaratoiu78, 8 ani în urmă

Vă rog sa ma ajutati sa rezolv ecuatiile logaritmice este foarte urgent ​ toate ex de la 2-17

Anexe:

Răspunsuri la întrebare

Răspuns de constances
1

Răspuns:

Explicație pas cu pas:

Anexe:

ramonaratoiu78: mulțumesc, dar restul?
constances: In functie de timp. Sa speram ca pot sa rezolv cat mai multe
ramonaratoiu78: ok
ramonaratoiu78: ms
constances: Mi-a disparut posibilitatea de editare si nu pot sa incarc exercitiile ramase de rezolvat.
ramonaratoiu78: am rezolvat, mulțumesc mult
Răspuns de Seethh
1

1)~log_5(3x+4)=2~~~~~~~~~~~~~~~~~~C.E.~~3x+4 > 0\\\\log_5(3x+4)=2\Rightarrow log_5(3x+4)=log_55^2\Rightarrow 3x+4=5^2\Rightarrow \\\\\Rightarrow 3x+4=25\Rightarrow 3x=25-4\Rightarrow 3x=21\Rightarrow x=\dfrac{21}{3} \Rightarrow \boxed{x=7}

2)~log_2(x+2)+log_2x=3~~~~~~~~~~~~~~~~~~~C.E.~~x+2 > 0\\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~x > 0\\\\log_2(x+2)+log_2x=3\Rightarrow log_2(x(x+2))=log_22^3\Right \Rightarrow x(x+2)=2^3\Rightarrow \\\\\Rightarrow x^2+2x=8\Rightarrow x^2+2x-8=0\\\\a=1,~b=2,~c=-8\\\\\Delta=b^2-4ac =2^2-4\cdot1\cdot(-8)=4+32=36 > 0

x_1=\dfrac{-b-\sqrt{\Delta} }{2a}=\dfrac{-2-\sqrt{36} }{2\cdot 1} =\dfrac{-2-6}{2}=-\dfrac{8}{2}=-4\\\\x_2=\dfrac{-b+\sqrt{\Delta} }{2a}=\dfrac{-2+\sqrt{36} }{2\cdot1}=\dfrac{-2+6}{2}=\dfrac{4}{2}=2\\\\x_1=-4~nu~indeplineste~conditiile~de~existenta,\\\\solutia~finala~este~\boxed{x_2=2}

3)~log_2(x+2)-log_2(x-5)=3~~~~~~~~~~~~~~~~~~~C.E.~~x+2 > 0\\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~x-5 > 0\\\\log_2(x+2)-log_2(x-5)=3\Rightarrow log_2\dfrac{x+2}{x-5} =log_22^3\Rightarrow \dfrac{x+2}{x-5}=2^3\Rightarrow \\\\\Rightarrow \dfrac{x+2}{x-5}=8\Rightarrow x+2=8(x-5)\Rightarrow x+2=8x-40\Rightarrow \\\\\Rightarrow x-8x=-40-2\Rightarrow -7x=-42\Rightarrow x=\dfrac{42}{7} \Rightarrow \boxed{x=6}

4)~log_3(x^2-6)=log_3(2x-3)~~~~~~~~~~~~~~~~~~C.E.~~x^2-6 > 0\\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~2x-3 > 0\\\\log_3(x^2-6)=log_3(2x-3) \Rightarrow x^2-6=2x-3  \Rightarrow x^2-2x-6+3=0\\\\\Rightarrow x^2-2x-3=0

a=1,~b=-2,~c=-3\\\\\Delta=b^2-4ac=(-2)^2-4\cdot1\cdot(-3)=4+12=16 > 0\\\\x_1=\dfrac{-b-\sqrt{\Delta} }{2a}=\dfrac{-(-2)-\sqrt{16} }{2\cdot 1}=\dfrac{2-4}{2}=-\dfrac{2}{2}=-1\\\\x_2=\dfrac{-b+\sqrt{\Delta} }{2a}=\dfrac{-(-2)+\sqrt{16} }{2\cdot1}=\dfrac{2+4}{2} =\dfrac{6}{2}=3 \\\\x_1=-1~nu~indeplineste~conditiile~de~existenta,\\\\solutia~finala~este~\boxed{x=3}

5)~log_3(x^2-4x+4)=2~~~~~~~~~~~~~~~C.E.~~x^2-4x+4=2\\\\log_3(x^2-4x+4)=2\Rightarrow log_3(x^2-4x+4)=log_33^2\Rightarrow \\\\\Rightarrow x^2-4x+4=3^2\Rightarrow x^2-4x+4=9\Rightarrow x^2-4x+4-9=0\Rightarrow \\\\\Rightarrow x^2-4x-5=0

a=1,~b=-4,~c=-5\\\\\Delta=b^2-4ac=(-4)^2-4\cdot1\cdot(-5)=16+20=36 > 0\\\\x_1=\dfrac{-b-\sqrt{\Delta} }{2a}=\dfrac{-(-4)-\sqrt{36} }{2\cdot1}=\dfrac{4-6}{2}=-\dfrac{2}{2}=-1~~~~~~~~~~~~~~\boxed{x_1=-1}    \\\\x_2=\dfrac{-b+\sqrt{\Delta} }{2a}=\dfrac{-(-4)+\sqrt{36} }{2\cdot 1}=\dfrac{4+6}{2}=\dfrac{10}{2} =5~~~~~~~~~~~~~~~~~~\boxed{x_2=5}

6)~log_2(x-3)=0~~~~~~~~~~~~~~~~~C.E.~~x-3 > 0\\\\log_2(x-3)=0\Rightarrow log_2(x-3)=log_21\Rightarrow x-3=1\Rightarrow x=1+3\Rightarrow \boxed{x=4}

7)~log_2(2x+5)=log_2(x^2+3x+3)~~~~~~~~~~~~~~C.E.~~x^2+3x+3 > 0\\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~2x+5 > 0\\\\log_2(2x+5)=log_2(x^2+3x+3)\Rightarrow 2x+5=x^2+3x+3\Rightarrow \\\\\Rightarrow -x^2-3x+2x+5-3=0\Rightarrow -x^2-x+2=0|\cdot(-1)\Rightarrow\\\\\Rightarrow x^2+x-2=0

a=1,~b=1,~c=-2\\\\\Delta=b^2-4ac=1^2-4\cdot 1 \cdot(-2)=1+8=9 > 0\\\\x_1=\dfrac{-b-\sqrt{\Delta} }{2a} =\dfrac{-1-\sqrt{9} }{2\cdot1}=\dfrac{-1-3}{2} =-\dfrac{4}{2} =-2~~~~~~~~~~~~\boxed{x_1=-2} \\\\x_2=\dfrac{-b+\sqrt{\Delta} }{2a} =\dfrac{-1+\sqrt{9} }{2\cdot 1}=\dfrac{-1+3}{2}=\dfrac{2}{2}=1~~~~~~~~~~~~~~~~~~\boxed{x_2=1}

8)~log_3(x^2-1)=1~~~~~~~~~~~~~~~~~C.E.~~x^2-1 > 0\\\\log_3(x^2-1)=1\Rightarrow log_3(x^2-1)=log_33\Rightarrow x^2-1=3\Rightarrow\\\\\Rightarrow x^2-1-3=0\Rightarrow x^2-4=0\Rightarrow (x+2)(x-2)=0\\\\x+2=0\Rightarrow x=0-2\Rightarrow \boxed{x=-2}\\\\x-2=0\Rightarrow x=0+2\Rightarrow \boxed{x=2}

9)~log_2(x^2-4)=log_2(x^2-3x+2)~~~~~~~~~~~~~~~~~~C.E.~~x^2-3x+2 > 0\\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~x^2-4 > 0\\\\log_2(x^2-4)=log_2(x^2-3x+2)\Rightarrow x^2-4=x^2-3x+2\Rightarrow\\\\\Rightarrow x^2-x^2+3x=2+4\Rightarrow 3x=6\Rightarrow x=\dfrac{6}{3}\Rightarrow x=2\\\\x=2~nu~indeplineste~conditiile~de~existenta,\\\\~\cfrac{nu~sunt~solutii~pentru~x\in\mathbb{R}}

Anexe:
Alte întrebări interesante