Matematică, întrebare adresată de mihaimrc, 8 ani în urmă

Va rog sa-mi dati o indicatie cum pot calcula urmatoarea serie:
1/2+2/3+3/4+....+99/100.
Va multumesc!

Răspunsuri la întrebare

Răspuns de atlarsergiu
0

s =  \frac{1}{2}  +  \frac{2}{3}  +  \frac{3}{4}  + ... +  \frac{99}{100}

Dacă ne gândim la numitorul comun ar trebui să înmulțim toate numere întrw ele:

s =   \frac{1 {}^{2}  + 2 {}^{2} + 3 {}^{2}   + ... + 99 {}^{2} }{2 \times 3 \times 4 \times ... \times 100}

Formula zice că 1²+2²+3²+...+n²=[n(n+1)(2n+1)]/6

Atunci:

s =  \frac{ \frac{99  \times 100 \times (2 \times 99 + 1)}{6} }{2 \times 3 \times 4 \times ... \times 100}  \\  \\  \\ s =   \frac{ \frac{199}{6} }{2 \times 3 \times 4 \times ... \times 98}

Ți-am dat o indicație cred nu stiu de aici sper sa îți vină idei


mihaimrc: Multumesc mult!
Alte întrebări interesante