Matematică, întrebare adresată de soniaciurte13, 8 ani în urmă

Va rog sa rezolvați si sa explicați cum ​

Anexe:

Răspunsuri la întrebare

Răspuns de andyilye
1

Explicație pas cu pas:

 \frac{1}{3} -  \frac{1}{3}  \{ \frac{1}{3} +  \frac{1}{3} \left[ \frac{1}{3} -  \frac{1}{3} \left( \frac{1}{3}x - 1  \right) \right]\} =  \frac{1}{12} \\

 -  \frac{1}{3}  \{ \frac{1}{3} +  \frac{1}{3} \left[ \frac{1}{3} -  \frac{1}{3} \left( \frac{1}{3}x - 1  \right) \right]\} =  \frac{1}{12}  -  \frac{1}{3} \\

-  \frac{1}{3}  \{ \frac{1}{3} +  \frac{1}{3} \left[ \frac{1}{3} -  \frac{1}{3} \left( \frac{1}{3}x - 1  \right) \right]\} =  \frac{1 - 4}{12} \\

-  \frac{1}{3}  \{ \frac{1}{3} +  \frac{1}{3} \left[ \frac{1}{3} -  \frac{1}{3} \left( \frac{1}{3}x - 1  \right) \right]\} =  -  \frac{3}{12} \\

\frac{1}{3}  \{ \frac{1}{3} +  \frac{1}{3} \left[ \frac{1}{3} -  \frac{1}{3} \left( \frac{1}{3}x - 1  \right) \right]\} = \frac{1}{4} \\

 \frac{1}{3} +  \frac{1}{3} \left[ \frac{1}{3} -  \frac{1}{3} \left( \frac{1}{3}x - 1  \right) \right] = \frac{1}{4} \times  \frac{3}{1}  \\

\frac{1}{3} \left[ \frac{1}{3} -  \frac{1}{3} \left( \frac{1}{3}x - 1  \right) \right] = \frac{3}{4} -  \frac{1}{3} \\

\frac{1}{3} \left[ \frac{1}{3} -  \frac{1}{3} \left( \frac{1}{3}x - 1  \right) \right] = \frac{3 \times 3 - 4}{12}\\

\frac{1}{3} -  \frac{1}{3} \left( \frac{1}{3}x - 1  \right) = \frac{5}{12} \times  \frac{3}{1} \\

 -  \frac{1}{3} \left( \frac{1}{3}x - 1  \right) = \frac{5}{4} -  \frac{1}{3}  \\

-  \frac{1}{3} \left( \frac{1}{3}x - 1  \right) = \frac{5 \times 3 - 4}{12}  \\

 -  \frac{1}{3} \left( \frac{1}{3}x - 1  \right) = \frac{11}{12}  \\

\frac{1}{3}x - 1 = \frac{11}{12} \times\left( -  \frac{3}{1}\right) \\

\frac{1}{3}x - 1 =  - \frac{11}{4} \\

\frac{1}{3}x =  - \frac{11}{4} + 1 \\

\frac{1}{3}x =  - \frac{11 + 4}{4} \\

x =  - \frac{7}{4} \times  \frac{3}{1}  \\

x =  - \frac{21}{4}\\

Alte întrebări interesante