Matematică, întrebare adresată de andreeaalexa269, 8 ani în urmă

Va rog trebuie pana la 21 noaptea sa trimit la profa de mate​

Anexe:

Răspunsuri la întrebare

Răspuns de pav38
3

Răspuns: \bf \red{\underline{2^{4}}}

Explicație pas cu pas:

\bf c) ~2\cdot 2^{2}\cdot 2^{2^2}:\big[2+2^2+ 2^{2^2}:\big( 2^{2^2}-2^2\cdot2\big)\big]

\bf 2\cdot 2^{2}\cdot 2^{4}:\big[2+2^2+ 2^{4}:\big( 2^{4}-2^2\cdot2\big)\big]=

\bf 2^{1+2+4}:\big[2+2^2+ 2^{4}:\big( 2^{4}-2^{2+1}\big)\big]=

\bf 2^{7}:\big[2+2^2+ 2^{4}:\big( 2^{4}-2^{3}\big)\big]=

\bf 2^{7}:\big\{2+2^2+ 2^{4}:\big[2^{3}\cdot\big( 2^{4-3}-2^{3-3}\big)\big]\big\}=

\bf 2^{7}:\big\{2+2^2+ 2^{4}:\big[2^{3}\cdot\big( 2^{1}-2^{0}\big)\big]\big\}=

\bf 2^{7}:\big\{2+2^2+ 2^{4}:\big[2^{3}\cdot\big( 2-1\big)\big]\big\}=

\bf 2^{7}:\big[2+2^2+ 2^{4}:\big(2^{3}\cdot1\big)\big]=

\bf 2^{7}:\big(2+2^2+ 2^{4}:2^{3}\big)=

\bf 2^{7}:\big(2+2^2+ 2^{4-3}\big)=

\bf 2^{7}:\big(2+2^2+ 2^{1}\big)=

\bf 2^{7}:\big(2+4+ 2\big)=2^{7}:8=

\bf 2^{7}:2^{3}= 2^{7-3}=\red{\underline{2^{4}}}

Răspuns de targoviste44
1

\it = 2\cdot2^2\cdot2^4:\[[2+2^2+2^4\cdot(2^4-2^2\cdot2)]=2^7:(2+4+16:8)=\\ \\ =2^7:8=2^7:2^3=2^4=16

Alte întrebări interesante