Matematică, întrebare adresată de constantinaivascu234, 8 ani în urmă

va rog urgent dau coroana​

Anexe:

Răspunsuri la întrebare

Răspuns de andyilye
0

Explicație pas cu pas:

\sqrt{1062.76} = \sqrt{ \dfrac{106276}{100} } = \sqrt{ \dfrac{ {326}^{2} }{ {10}^{2} } } = \dfrac{326}{10} = 32.6 \\  \sqrt{5.4756} = \sqrt{ \dfrac{54756}{10000} } = \sqrt{ \dfrac{ {234}^{2} }{ {100}^{2} } } = \frac{234}{100} = 2.34 \\ \sqrt{166.41} = \sqrt{ \dfrac{16641}{100} } = \sqrt{ \dfrac{ {129}^{2} }{ {10}^{2} } } = \frac{129}{10} = 12.9 \\ \sqrt{38.5641} = \sqrt{ \dfrac{385641}{10000} } = \sqrt{ \dfrac{ {621}^{2} }{ {100}^{2} } } = \frac{621}{100} = 6.21 \\ \sqrt{10.4976} = \sqrt{ \dfrac{104976}{10000} } = \sqrt{ \dfrac{ {324}^{2} }{ {100}^{2} } } = \frac{324}{100} = 3.24 \\ \sqrt{0.015129} = \sqrt{ \dfrac{15129}{1000000} } = \sqrt{ \dfrac{ {123}^{2} }{ {1000}^{2} } } = \frac{123}{1000} = 0.123 \\ \sqrt{0.2916} = \sqrt{ \dfrac{2916}{10000} } = \sqrt{ \dfrac{ {54}^{2} }{ {100}^{2} } } = \frac{54}{100} = 0.54 \\ \sqrt{0.000289} = \sqrt{ \dfrac{289}{1000000} } = \sqrt{ \dfrac{ {17}^{2} }{ {1000}^{2} } } = \frac{17}{1000} = 0.017 \\ \sqrt{0.000225} = \sqrt{ \dfrac{225}{1000000} } = \sqrt{ \dfrac{ {15}^{2} }{ {1000}^{2} } } = \frac{15}{1000} = 0.015 \\ \sqrt{0.001296} = \sqrt{ \dfrac{1296}{1000000} } = \sqrt{ \dfrac{ {36}^{2} }{ {1000}^{2} } } = \frac{36}{1000} = 0.036 \\ \sqrt{10.1124} = \sqrt{ \dfrac{101124}{10000} } = \sqrt{ \dfrac{ {318}^{2} }{ {100}^{2} } } = \frac{318}{100} = 3.18 \\ \sqrt{42.3801} = \sqrt{ \dfrac{423801}{10000} } = \sqrt{ \dfrac{ {651}^{2} }{ {100}^{2} } } = \frac{651}{100} = 6.51 \\ \sqrt{13.1044} = \sqrt{ \dfrac{131044}{10000} } = \sqrt{ \dfrac{ {362}^{2} }{ {100}^{2} } } = \frac{362}{100} = 3.62 \\ \sqrt{0.016129} = \sqrt{ \dfrac{16129}{1000000} } = \sqrt{ \dfrac{ {127}^{2} }{ {1000}^{2} } } = \frac{127}{1000} = 0.127 \\ \sqrt{0.015876} = \sqrt{ \dfrac{15876}{1000000} } = \sqrt{ \dfrac{ {126}^{2} }{ {1000}^{2} } } = \frac{126}{1000} = 0.126

Alte întrebări interesante