Matematică, întrebare adresată de sebybors841, 8 ani în urmă

valoarea minimă a expresiei = x ^ 2 + 5 este
va rog ajutatima​


stefanboiu: = 5
sebybors841: Dă-mi și calculu
sebybors841: te rog
stefanboiu: x^2 >=0 |+5, rezulta
x^2 + 5 >= 0 + 5
deci x^2 + 5 >= 5
stefanboiu: Concluzie: valoarea minimă a expreiei este 5
sebybors841: ms
sebybors841: mult

Răspunsuri la întrebare

Răspuns de GreenEyes71
3

Salut,

Orice pătrat perfect ia numai valori pozitive, deci:

x² ≥ 0.

Dacă adunăm 5 la ambii membri ai inecuației de mai sus avem că:

x² + 5 ≥ 0 + 5, deci x² + 5 ≥ 5.

Valoarea minimă căutată este deci 5.

A fost greu ?

Green eyes.


sebybors841: ms
Alte întrebări interesante