Matematică, întrebare adresată de zanitzu, 9 ani în urmă

verificati daca 21*20-7*20 este divizibil cu 10


HawkEyed: * e semnul puterii sau inmultirii?
zanitzu: puterii

Răspunsuri la întrebare

Răspuns de Utilizator anonim
6

U(21^20)=U(1^20)=1
U(7^20)=?

U(7^1)=7
U(7^2)=9
U(7^3)=3
U(7^4)=1
................


20:4=5 (rest 0)
U(7^20)=U(7^{5·4+0})=U(7^4)=1

U(21^20 - 7^20)=U( U(21^20)-U(7^20) )=U(1-1)=0


Pentru ca un numar sa fie divizibil cu 10 trebuie sa aiba ultima cifra 0!

Ultima cifra a lui 21^20 - 7^20 este 0
Deci este divizibil cu 10




Utilizator anonim: sint Adinak, imi va fi dor de tine!
cartea78: A fost o greșeală , nu am vrut să raportez.
cartea78: Scuze !
Răspuns de Rayzen
8
[tex]21^{20}-7^{20} = \\ \\ = (3\cdot 7)^{20} - 7^{20} = \\ \\ =3^{20}\cdot 7^{20} - 7^{20} = \\ \\ = 7^{20} \cdot (3^{20} - 1) \\ \\ \left\| \begin{array}{ll}U(3^1) = 3$ $ \rightarrow \text{pozitia}~\bold{1}\\ U(3^2) = 9\rightarrow \text{pozitia}~\bold{2} \\ U(3^3) = 7 \rightarrow \text{pozitia}~\bold{3}\\ U(3^4) = 1\rightarrow \text{pozitia}~\bold{0}\\ \dots\dots\dots\dots\dots\dots\dots. \\U(3^5) = 3 \end{array} \right | 20:4 = 5 $ rest $ \bold{0} \Rightarrow U(3^{20}) = 1 \\ \\ \\ \Rightarrow U(3^{20}-1) = 1-1 = 0 [/tex]

[tex]\Rightarrow U\Big( 7^{20} \cdot (3^{20}-1)\Big) = 0 \Rightarrow \boxed{21^{20}-7^{20} $ $\vdots$ $ 10}[/tex]

cartea78: A fost o greșeală nu am vrut să raportez .
cartea78: Scuze !
Alte întrebări interesante