Matematică, întrebare adresată de ale123lea30981, 8 ani în urmă

................ .....​

Anexe:

Răspunsuri la întrebare

Răspuns de andyilye
2

Explicație pas cu pas:

0 <  \frac{\pi}{12} <  \frac{\pi}{2} =  >I \\

\frac{5\pi}{3} = \frac{3\pi}{2}  +  \frac{1}{6} =  >  \\ \frac{3\pi}{2}  < \frac{5\pi}{3} < 2\pi  =  > IV

\frac{3\pi}{4} = \frac{\pi}{2}  +  \frac{1}{4}  \\ \frac{\pi}{2} < \frac{3\pi}{4} \leqslant \pi =  > II \\

\frac{11\pi}{12} = \frac{\pi}{2}  +  \frac{5\pi}{12}  \\ \frac{\pi}{2} < \frac{11\pi}{12} \leqslant \pi =  > II \\

\frac{5\pi}{6} = \frac{\pi}{2} +  \frac{\pi}{3}  \\ \frac{\pi}{2} < \frac{5\pi}{6} \leqslant \pi =  > II \\

\frac{5\pi}{4} = \pi + \frac{\pi}{4} \\ \pi < \frac{5\pi}{4} \leqslant  \frac{\pi}{2}  =  > III \\

\frac{7\pi}{6} = \pi + \frac{\pi}{6} \\ \pi < \frac{7\pi}{6} \leqslant  \frac{\pi}{2}  =  > III \\

\frac{7\pi}{3} = 2\pi + \frac{\pi}{3} =  >  \\ 0 <  \frac{\pi}{3} < \frac{\pi}{2}  \\ \frac{7\pi}{3}  =  > I

\frac{7\pi}{4} =  \frac{3\pi}{2} + \frac{\pi}{4} =  > \\ \frac{3\pi}{2}  <  \frac{7\pi}{4} < 2\pi =  > IV

\frac{11\pi}{6} = \frac{3\pi}{2} + \frac{\pi}{3} =  > \\ \frac{3\pi}{2}  <  \frac{11\pi}{6} < 2\pi =  > IV

0 <  \frac{5\pi}{12} < \frac{\pi}{2} =  >I \\

\frac{7\pi}{12} = \frac{\pi}{2} +  \frac{\pi}{12}  \\ \frac{\pi}{2} < \frac{7\pi}{12} \leqslant \pi =  > II \\

\frac{5\pi}{3} = \frac{3\pi}{2} + \frac{\pi}{6} =  > \\ \frac{3\pi}{2}  <  \frac{5\pi}{3} < 2\pi =  > IV

0 <  \frac{\pi}{3} < \frac{\pi}{2} =  >I \\

0 <  \frac{\pi}{4} < \frac{\pi}{2} =  >I \\

Alte întrebări interesante