Matematică, întrebare adresată de paulaandra, 9 ani în urmă

1)demonstrati ca nr.a este divizibil cu 5,unde:a=2+4+6+...+78.2)demonstreaza xa nr.a este patrat perfect,unde a=1+2+3+...+100+51•101.3)gasiti nr.naturale cu prpoietatea:a41b:10

Răspunsuri la întrebare

Răspuns de renatemambouko
4
a=2+4+6+...+78
a=2(1+2+3...+39)=2×39×(39+1)/2=39×40=39×8×5 deci divizibil cu 5


2) a=1+2+3+...+100+51•101=
=100(100+1)/2+51•101=
=50×101+51×101=101(50+51)=101×101=101²

3)gasiti nr.naturale cu proprietatea:a41b:10
b=0
a={1,2,3,4,5,6,7,8,9}
deci nr sunt
1410 ;2410;3410;4410;5410;6410;7410;8410;9410
6410
Alte întrebări interesante