1)Rezolvați în R ecuațiile:
2)Rezolvati în R ecuatiile:
VĂ ROG REPEDE DACĂ SE POATE!
Răspunsuri la întrebare
Răspuns:
Explicație pas cu pas:
1) a) x²-2x = 0 <=> x(x-2) = 0 => x₁ = 0 ; x₂ = 2
b) x²+5x = 0 <=> x(x+5) = 0 => x₁ = 0 ; x₂ = -5
c) x²+9x = 0 <=> x(x+9) = 0 => x₁ = 0 ; x₂ = -9
d) 2x²-18x = 0 <=> 2x(x-9) = 0 => x₁ = 0 ; x₂ = 9
e) 2x²+14x = 0 <=> 2x(x+7) = 0 => x₁ = 0 ; x₂ = -7
f) 5x²-10x = 0 <=> 5x(x-2) = 0 => x₁ = 0 ; x₂ = 2
g) 18x² = 24x <=> 18x²-24x = 0 <=> 6x(3x-4) = 0 => x₁ = 0 ; x₂ = 4/3
h) 12x² = -8x <=> 12x²+8x = 0 <=> 4x(3x+2) = 0 => x₁ = 0 ; x₂ = -2/3
i) 15x² = 20x <=> 15x²-20x = 0 <=> 5x(3x-4) = 0 => x₁ = 0 ; x₂ = 4/3
a) x²-1 = 0 => x² = 1 => x₁,₂ = ±√1 => x₁,₂ = ±1 => x₁ = -1 ; x₂ = 1
b) x²-4 = 0 => x² = 4 => x₁,₂ = ±√4 => x₁,₂ = ±2 => x₁ = -2 ; x₂ = 2
c) x²-9 = 0 => x²=9 => x₁,₂ = ±√9 => x₁,₂ = ±3 => x₁ = -3 ; x₂ = 3
d) 4x²-9 = 0 => 4x² = 9 => x² = 9/4 => x₁,₂ = ±√(9/4) =>
x₁,₂ = ±3/2 => x₁ = -3/2 ; x₂ = 3/2
e) 9x²-4 = 0 => 9x² = 4 => x² = 4/9 => x₁,₂ = ±√(4/9) =>
x₁,₂ = ±2/3 => x₁ = -2/3 ; x₂ = 2/3
f) 16x²-1 = 0 => 16x² = 1 => x² = 1/16 => x₁,₂ = ±√(1/16) =>
x₁,₂ = ±1/4 => x₁ = -1/4 ; x₂ = 1/4
g) 25x² = 36 => x² = 36/25 => x₁,₂ = ±√(36/25) =>
x₁,₂ = ±6/5 => x₁ = -6/5 ; x₂ = 6/5
h) 49x² = 64 => x² = 64/49 => x₁,₂ = ±√(64/49) =>
x₁,₂ = ±8/7 => x₁ = -8/7 ; x₂ = 8/7
i) 81x² = 16 => x² = 16/81 => x₁,₂ = ±√(16/81) =>
x₁,₂ = ±4/9 => x₁ = -4/9 ; x₂ = 4/9