Matematică, întrebare adresată de pscoala93, 8 ani în urmă

1. Sa se rationalizeze numitorii urmatoarelor fractii:
va rog dau coroana plss​

Anexe:

Răspunsuri la întrebare

Răspuns de axel0
3

\frac{2}{\sqrt{3} - \sqrt{2}}  = \frac{2\left(\sqrt{3}+\sqrt{2}\right)}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}  =\frac{2\sqrt{3}+2\sqrt{2}}{1} =2\sqrt{3}+2\sqrt{2}

\frac{-1}{1-\sqrt{5}} =\frac{-1\cdot \left(1+\sqrt{5}\right)}{\left(1-\sqrt{5}\right)\left(1+\sqrt{5}\right)} =\frac{-1-\sqrt{5}}{-4} =\frac{1+\sqrt{5}}{4}

\frac{2}{2\sqrt{3}-1} =\frac{2\left(2\sqrt{3}+1\right)}{\left(2\sqrt{3}-1\right)\left(2\sqrt{3}+1\right)} =\frac{4\sqrt{3}+2}{11}

\frac{-5\sqrt{3}+6}{\sqrt{3}-1} =\frac{\left(-5\sqrt{3}+6\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)} =\frac{-9+\sqrt{3}}{2}

\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}} =\frac{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)} =\frac{5+2\sqrt{6}}{1} =5+2\sqrt{6}

\frac{\sqrt{3}}{2\sqrt{3}-5\sqrt{2}} =\frac{\sqrt{3}\left(2\sqrt{3}+5\sqrt{2}\right)}{\left(2\sqrt{3}-5\sqrt{2}\right)\left(2\sqrt{3}+5\sqrt{2}\right)}  =\frac{6+5\sqrt{6}}{-38} =-\frac{6+5\sqrt{6}}{38}

Răspuns de dariusbarbu
3

Răspuns:

Explicație pas cu pas:

a) \:  \frac{ {}^{ \sqrt{3}   + \sqrt{2} )} 2}{ \sqrt{3} -  \sqrt{2}  }  =  \frac{2( \sqrt{3}  +  \sqrt{2} )}{( \sqrt{3}  +  \sqrt{2})( \sqrt{3}   -  \sqrt{2}) }  =  \frac{2 \sqrt{3}  + 2 \sqrt{2}  }{3 - 2}  = 2 \sqrt{3}   +  2 \sqrt{2 }  \\

b) \:  \frac{  {}^{1 +  \sqrt{5}) } - 1}{1 -  \sqrt{5} }  =  \frac{ - 1(1 +  \sqrt{5}) }{(1 +  \sqrt{5})(1 -  \sqrt{5} ) }  =  -  \frac{1 +  \sqrt{5} }{1 - 5}  =  -  \frac{1 +  \sqrt{5} }{ - 4}  =  \frac{1 +\sqrt{5} }{4}  \\

c) \:  \frac{ {}^{2 \sqrt{3}  + 1)} 3}{2 \sqrt{3}  - 1}    =  \frac{3(2 \sqrt{3}  + 1)}{(2 \sqrt{3} + 1)(2 \sqrt{3}  - 1) }  =  \frac{6 \sqrt{3}  + 3}{4 \times 3 - 1}  =  \frac{6 \sqrt{3 }  +3 }{11}  \\

d) \:  \frac{  {}^{ \sqrt{3} + 1) } - 5 \sqrt{3}  + 6}{ \sqrt{3}  - 1}  =  \frac{( - 5 \sqrt{3}  + 6)( \sqrt{3} + 1) }{( \sqrt{3}  + 1)( \sqrt{3}  - 1)}  =  \frac{ - 15 - 5 \sqrt{3}  + 6 \sqrt{3} + 6 }{3 - 1}  =  \frac{ - 9 +  \sqrt{3} }{2}  \\

e) \:  \frac{ {}^{ \sqrt{3}  +  \sqrt{2}) }  \sqrt{3}  +  \sqrt{2} }{ \sqrt{3} -  \sqrt{2}  }  =  \frac{( \sqrt{3}  +  \sqrt{2} )( \sqrt{3}  +  \sqrt{2}) }{( \sqrt{3} -  \sqrt{2} )( \sqrt{3}  +  \sqrt{2}  )}  =  \frac{( \sqrt{3} +  \sqrt{2} ) {}^{2}  }{3 - 2}  =  3  + 2 \sqrt{6}   + 2 = 5 +  2 \sqrt{6}  \\

f) \:  \frac{  {}^{2 \sqrt{3}  + 5 \sqrt{2}) } \sqrt{3} }{2 \sqrt{3} - 5 \sqrt{2}  }   =  \frac{ \sqrt{3} (2 \sqrt{3}  + 5 \sqrt{2}) }{(2 \sqrt{3}  - 5 \sqrt{2})(2 \sqrt{3}   + 5 \sqrt{2}) }  =  \frac{6 + 5 \sqrt{6} }{4 \times 3 - 25 \times 2}  =  \frac{6 + 5 \sqrt{6} }{12 - 50}  =   - \frac{ 6 + 5 \sqrt{6} }{38}  \\


axel0: cum ai facut sa pui amplificare la numarator in LaTeX?
dariusbarbu: la numărător pui ^{}
axel0: ms
dariusbarbu: cu placere !
Alte întrebări interesante