Matematică, întrebare adresată de elefantel, 9 ani în urmă

1) Simplificati fractiile urmatoare pana devin ireductibile:
a) 2 la puterea 19 supra 2 la puterea 21
b) 3 la puterea 34 supra 3 la puterea 37
c) 5 la puterea 63 supra 5 la puterea 65
d) 6 la puterea 47 supra 6 la puterea 48
e) 7 la puterea 78 supra 7 la puterea 80
f) 2 la puterea 65 supra 2 la puterea 70

2) Simplificati fractiile urmatoare
a)131313 supra 313131
b)171717 supra 717171
c)190019 supra 570057
d)50505 supra 373737
e)1515015 supra 5151051
f) 30303 supra 575757

Răspunsuri la întrebare

Răspuns de CarMina03
12

Răspuns:

Explicație pas cu pas:

Folosim formula \displaystyle\boxed{\frac{a^{n} }{a^{m} } =a^{n} : a^{m} =a^{n-m} }  si  \displaystyle\boxed{\ a^{-n} =\frac{1}{a^{n} }}

a)

\displaystyle\frac{2^{19} }{2^{21} } =2^{19-21} =2^{-2} =\frac{1}{2^{2} } =\frac{1}{4}

b)

\displaystyle\frac{3^{34} }{3^{37} } =3^{34-37} =3^{-3} =\frac{1}{3^{3} } =\frac{1}{27}

c)

\displaystyle \frac{5^{63} }{5^{65} } =5^{63-65} =5^{-2} =\frac{1}{5^{2} } =\frac{1}{25}

d)

\displaystyle\frac{6^{47} }{6^{48} } =6^{47-48} =6^{-1} =\frac{1}{6^{1} } =\frac{1}{6}

f)

\displaystyle\frac{2^{65} }{2^{70} } =2^{65-70} =2^{-5} =\frac{1}{2^{5} } =\frac{1}{32}

Simplificarea fractiilor inseamna a gasi acel numar comun atat la numitor cat si la numarator adica daca \displaystyle\boxed{\frac{a\times b}{a\times c} =\frac{b}{c} }

a)

\displaystyle\frac{131313}{313131} =\frac{3\times 7\times 13^{2}\times 37 }{3\times 7\times 31 \times 37} =\frac{\not3\times \not7\times 13^{2}\times \not37 }{\not3\times \not7\times 31\times \not37} =\frac{13^{2} }{31} =\frac{169}{31}

b)

\displaystyle\frac{171717}{717171} =\frac{3\times7\times13\times17\times37}{3\times7\times13\times37\times71} =\frac{\not3\times\not7\times\not13\times17\times\not37}{\not3\times\not7\times\not13\times\not37\times71} =\frac{17}{71}

c)

\displaystyle\frac{190019}{570057} =\frac{19\times73\times137}{3\times19\times73\times137} =\frac{\not19\times\not73\times\not137}{3\times\not19\times\not73\times\not137} =\frac{1}{3}

d)

\displaystyle\frac{50505}{373737} =\frac{3\times5\times7\times13\times37}{3\times7\times13\times37^{2} } =\frac{\not3\times5\times\not7\times\not13\times\not37}{\not3\times\not7\times\not13\times\not37^{2} } =\frac{5}{37}

e)

\displaystyle\frac{1515015}{5151051} =\frac{3^{2}\times5\times131\times257 }{3^{2}\times17\times131\times257 } =\frac{\not3^{2}\times5\times\not131\times\not257 }{\not3^{2}\times17\times\not131\times\not257 } =\frac{5}{17}

f)

\displaystyle\frac{30303}{575757} =\frac{3^{2}\times7\times13\times37 }{3^{2}\times7\times13\times19\times37 } =\frac{\not3^{2}\times\not7\times\not13\times\not37 }{\not3^{2}\times\not7\times\not13\times19\times\not37 } =\frac{1}{19}

Alte întrebări interesante