12. Mulțimile D= {x; 2•x -1; 3•x +1} și E = {3,5,10) sunt egale. Aflați numărul x.
Răspunsuri la întrebare
Explicație pas cu pas:
Teorie:
Stim ca ordinea elementelor in multime nu conteaza, adica {a,b}={b,a}.
Rezolvare:
Distingem, deci, mai multe cazuri. Vedem care dintre acestea ne convin.
Caz 1:
Consideram ordinea elementelor in multimea E={3,5,10}.
Doua multimi sunt egale daca au aceleasi elemente.
Stim ca D={x,2x-1,3x+1}.
Pentru ca D=E, atunci:
x=3
2x-1=5 => 2x=6 => x=3
3x+1=10 => 3x=9 => x=3
Cum am obtinut acelasi x, atunci x este solutie.
Caz 2:
Consideram ordinea elementelor in multimea E={3,10,5}.
Doua multimi sunt egale daca au aceleasi elemente.
Stim ca D={x,2x-1,3x+1}.
Pentru ca D=E, atunci:
x=3
2x-1=10 => 2x=11 => x=11/2
3x+1=5 => 3x=4 => x=4/3
Cum nu am obtinut acelasi x, atunci nu x este solutie.
Caz 3:
Consideram ordinea elementelor in multimea E={5,3,10}.
Doua multimi sunt egale daca au aceleasi elemente.
Stim ca D={x,2x-1,3x+1}.
Pentru ca D=E, atunci:
x=5
2x-1=3 => 2x=4 => x=2
3x+1=10 => 3x=9 => x=3
Cum nu am obtinut acelasi x, atunci x nu este solutie.
Caz 4:
Consideram ordinea elementelor in multimea E={5,10,3}.
Doua multimi sunt egale daca au aceleasi elemente.
Stim ca D={x,2x-1,3x+1}.
Pentru ca D=E, atunci:
x=3
2x-1=10 => 2x=11 => x=11/2
3x+1=3 => 3x=2 => x=2/3
Cum nu am obtinut acelasi x, atunci x nu este solutie.
Caz 5:
Consideram ordinea elementelor in multimea E={10,3,5}.
Doua multimi sunt egale daca au aceleasi elemente.
Stim ca D={x,2x-1,3x+1}.
Pentru ca D=E, atunci:
x=10
2x-1=3 => 2x=4 => x=2
3x+1=5 => 3x=4 => x=4/3
Cum nu am obtinut acelasi x, atunci x nu este solutie.
Caz 6:
Consideram ordinea elementelor in multimea E={10,5,3}.
Doua multimi sunt egale daca au aceleasi elemente.
Stim ca D={x,2x-1,3x+1}.
Pentru ca D=E, atunci:
x=10
2x-1=5 => 2x=6 => x=3
3x+1=3 => 3x=2 => x=2/3
Cum nu am obtinut acelasi x, atunci x nu este solutie.
Concluzie:
Ramanem doar cu solutia obtinuta in cazul 1 intrucat doar acolo am obtinut de 3 ori acelasi x.
Asadar, multimea D este:
D={3,2*3-1,3*3+1}={3,5,10}