Matematică, întrebare adresată de Damaya, 9 ani în urmă

2 + 7 + 12 + ... + x = 1550
Va rog sa ma ajutati.

Răspunsuri la întrebare

Răspuns de Utilizator anonim
1

Termenii sumei din membrul drept sunt termeni ai unei progresii aritmetice cu rația 5.

[tex]\it x =a_n = a_1+(n-1)r =2+(n-1)\cdot5 = 2+5n-5= 5n-3 \\\;\\ S_n = \dfrac{(a_1+a_n)n}{2} = \dfrac{(2+5n-3)n}{2} = \dfrac{(5n-1)n}{2} =\dfrac{5n^2-n}{2}[/tex]

Ecuația din enunț devine :


\dfrac{5n^2-n}{2} = 1550 \Leftrightarrow 5n^2-n =3100 \Leftrightarrow 5n^2-n -3100  = 0

Se rezolvă ecuația de gradul al II-lea și se reține numai soluția pozitivă,

n = 25, apoi se determină x din formula:

x = 5n - 3 = 5·25 - 3 = 122




Damaya: muultumesc ^^
Alte întrebări interesante