Matematică, întrebare adresată de catal1n3, 8 ani în urmă

4. În Figura 3 este dată o prismă triunghiulară regulată ABCA'B'C', cu BC = 6 cm și AA'=6 radical din 3 cm. Lungimea segmentului A'B este:
a)AB=6 radical din 2 cm.
b)AB=12 cm.
c)AB=6 cm.
d)AB=12 radical din 2 cm.
Cu tot cu rezolvare va rog!!!​

Anexe:

Răspunsuri la întrebare

Răspuns de ruxandraa1
1

Răspuns:

12 cm

Explicație pas cu pas:

ABCA'B'C'=prisma triunghiulara regulata=> ΔABC este triunghi echilateral => AB=BC=AC=6 cm

ABCA'B'C'= prisma triunghiulara regulata=> AA'⊥(ABC)=>

AA'⊥AB=> m(∡A'AB)=90°=> ΔA'AB=Δdreptunghic in A=>

AB^{2} +AA'^{2} =A'B^{2}(TEOREMA LUI PITAGORA)=>

6^{2} +(6\sqrt{3}) ^{2} = A'B^{2} => \\=> 36+ 36*3=A'B^{2} => 36(1+3)=A'B^{2} => A'B^{2} =36*4\\                                                                       A'B>0, deci \\\\A'B=\sqrt{36*4}=6*2=12   cm

Alte întrebări interesante