5. Se consideră triunghiul ABC dreptunghic în A . Punctul M este mijlocul segmentului BC , măsura unghiului ACB este de 30 grade şi B = 6cm.
(2p) a) Arată că perimetrul triunghiului ABM este egal cu 18cm .
(3p) b) Arată că aria triunghiului AMC este mai mică decât 16cm patrati .
Anexe:
Răspunsuri la întrebare
Răspuns de
38
Răspuns:
Explicație pas cu pas:
- a)
ΔABC : ∡A=90° , ∡C=30° => ∡B=180°-(90°+30°)=180°-120°=60°
ΔABC : ∡A=90°, AM-mediana => AM=BC/2 => AM=BM
ΔABM - Δ isoscel , ∡B=60° => ΔABM - Δechilateral =>
P ΔABM=3AB=3*6=18 cm
- b)
ΔABC - Δ dreptunghic => T.P : BC²=AB²+AC² , 12²=6²+AC² , 144-36=AC² =>AC=√108=6√3 cm
A ΔAMC = A ΔABC - A ΔABM = (c1*c2) / 2 - (l²√3) /4 =
= (AB*AC)/2 - (AB²√3)/4 = (6*6√3)/2 - (6²√3)/4 = 36√3/2 - 36√3/4
=18√3-9√3 = 9√3 cm²
A ΔAMC=9√3 cm²
9√3 = √(9²*3) = √(81*3)= √243
16=√256 => √243 < √256 => AΔAMC < 16 cm²
Alte întrebări interesante
Engleza,
8 ani în urmă
Matematică,
8 ani în urmă
Limba română,
8 ani în urmă
Matematică,
8 ani în urmă
Matematică,
9 ani în urmă