Matematică, întrebare adresată de soniasibunny, 8 ani în urmă

8. Determinați numărul de forma ab, stiind că suma cifrelor sale este 9 şi răsturnatu este cu 45 mai mic decât ab​

Răspunsuri la întrebare

Răspuns de dacianaszilagyi
0

Răspuns:

ab = 72

a + b = 7 + 2 = 9

răsturnatul lui 72 este 27

72 - 27 = 45


dacianaszilagyi: am căutat numere care să-mi dea suma 9 , apoi am făcut diferența dintre numărul găsit și răsturnatul lui
dacianaszilagyi: care îți dă rezultatul 45 acela este bun
dacianaszilagyi: exemplu 63 6 +3 = 9 63 - 36 = 27 nu-i bun
dacianaszilagyi: 81 8 + 1 = 9 81 - 18 = 63 nu-i bun
dacianaszilagyi: 72 7 + 2 = 9 72 - 27 = 45 acesta-i bun
dianageorgiana794: nu cauti , rezolvi matematic , numere in baza 10
dianageorgiana794: la examen cand ai timp limitat ,cauti??
dacianaszilagyi: noi nu am învățat cu numere în baza 10
dianageorgiana794: atunci de ce nu lasi pe altu sa rezolve
dacianaszilagyi: noi așa am învățat
Răspuns de dianageorgiana794
1

Răspuns:

a+b=9

ba-45=ab

ab-ba=45

10a+b-10b-a=45

9a-9b=45

9(a-b)=45

a-b=45:9=>a-b=5

a+b+a-b=9+5

2a=14=>a=14:2=>a=7

b=9-7=>b=2

ab=72

ba=27 rasturnatul

verificare:

72-27=45

Alte întrebări interesante