Matematică, întrebare adresată de Alexut20, 8 ani în urmă

Aflati valoare numarului natural nenul n pt care
 \frac{1}{1 \times 2}  +  \frac{2}{1 \times 2 \times 3}  +  \frac{3}{1 \times 2 \times 3 \times 4}  + ... +   \frac{n}{1  \times 2 \times 3 \times 4 \times ... \times n + 1}  =  \frac{(1 \times 2 \times 3 \times ... \times 2006)  - 1}{1 \times 2 \times 3 \times ...  \times 2006}

Răspunsuri la întrebare

Răspuns de Rayzen
0

\displaystyle \dfrac{1}{1\cdot 2}+\dfrac{2}{1\cdot 2\cdot 3}+\dfrac{3}{1\cdot 2\cdot 3\cdot 4}+...+\dfrac{n}{1\cdot 2\cdot 3\cdot 4\cdot...\cdot(n+1)} = \\ \\ = \sum\limits_{k=1}^n \dfrac{k}{(k+1)!} = \sum\limits_{k=1}^n\dfrac{k+1-1}{(k+1)!} = \sum\limits_{k=1}^n \dfrac{k+1}{(k+1)!} - \sum\limits_{k=1}^n\dfrac{1}{(k+1)!} =\\ \\ = \sum\limits_{k=1}^n \dfrac{k+1}{k!(k+1)}-\sum\limits_{k=1}^n\dfrac{1}{(k+1)!} = \sum\limits_{k=1}^n\dfrac{1}{k!} - \sum\limits_{k=1}^n\dfrac{1}{(k+1)!} =

= \dfrac{1}{1!}+\dfrac{1}{2!}+\dfrac{1}{3}!+...+\dfrac{1}{n!} - \dfrac{1}{2!}-\dfrac{1}{3!}-...-\dfrac{1}{n!}-\dfrac{1}{(n+1)!} = \\ \\ = \dfrac{1}{1!} - \dfrac{1}{(n+1)!} = \dfrac{(n+1)!-1}{(n+1)!}= \dfrac{\Big[1\cdot 2\cdot 3\cdot ...\cdot (n+1)\Big]-1}{1\cdot 2\cdot 3\cdot ...\cdot (n+1)} \\ \\ \\ \Rightarrow \boxed{n = 2005}


Alexut20: scz dar n am învățat din alea cu E
Răspuns de MrSarcasm
0

Răspuns:

n=2005

Explicație pas cu pas:

\frac{1}{2!} =\frac{2-1}{2!} =\frac{2}{2!} -\frac{1}{2!} =\frac{1}{1!} -\frac{1}{2!} \\\frac{2}{3!}=\frac{3-1}{3!}  =\frac{3}{3!} -\frac{1}{3!} =\frac{1}{2!} -\frac{1}{3!} \\....\\ \frac{n}{(n+1)!}=\frac{n+1-1}{(n+1)!} =\frac{n+1}{(n+1)!}-\frac{1}{(n+1)!}=\frac{1}{n!} -\frac{1}{(n+1)!}\\    Adunand aceste egalitati membru cu membru, obtinem in final:\\\frac{1}{2!} +\frac{2}{3!}+...+\frac{n}{(n+1)!}=1-\frac{1}{2!} +\frac{1}{2!}-\frac{1}{3!}+....+\frac{1}{n!}-\frac{1}{(n+1)!}\\

1-\frac{1}{(n+1)!}=\frac{2006!-1}{2006!}=>1-\frac{1}{(n+1)!}=1-\frac{1}{2006!}==>\\    =>(n+1)!=2006!=>n+1=2006=>n=2005

Alte întrebări interesante