AJUTORRR! Cine e bun la mate? Am nevoie,va rog,macar rezultatele la ele daca nu :c
Răspunsuri la întrebare
Răspuns:
Explicație pas cu pas:
a) x⁴-3x²+2 = 0
x² = t => t²-3t+2 = 0 <=> t²-2t-t+2 = 0 => t(t-2) -(t-2) = 0 <=>
(t-2)(t-1) = 0 => t₁ = 1 ; t₂ = 2 =>
x² = 1 => x₁,₂ = ± 1 ; x₃,₄ = ± √2
b) x⁴ - 4x² +3 = 0
x² = t => t²-4t+3 = 0 <=> t²-3t-t+3 = 0 <=> t(t-3)-(t-3) = 0 <=>
(t-3)(t-1) = 0 => t₁ = 1 ; t₂ = 3
x² = 1 => x₁,₂ = ± 1 ; x² = 3 => x₃,₄ = ± √3
c) x⁴-5x²+4 = 0 ; x² = t
t² -5t+4 = 0 <=> t²-4t-t+4 = 0 <=> t(t-4)-(t-4) =0 <=>
(t-4)(t-1) = 0 => t₁ = 1 ; t₂ = 4
x² = 1 => x₁,₂ = ± 1 ; x² = 4 => x₃,₄ = ± √4 = ± 2
d) x⁴-7x²+12 = 0 ; x² = t => t²-7t+12 = 0
a = 1 ; b = -7 , c = 12 ; Δ = b²-4ac = 49-48 = 1 ; √Δ = 1
t₁,₂ = (-b±√Δ)/2a = (7±1)/2 => t₁ = 3 ; t₂ = 4
x² = 3 => x₁,₂ = ± √3 ; x² = 4 => x₃,₄ = ± 2
e) x⁴+3x²+2 = 0 ; x² = t ; t²+3t+2 = 0 ; a = 1 ; b = 3 ; c = 2
Δ = 9-8 = 1 ; √Δ = 1 ; t₁,₂ = (-3±1)/2 => t₁ = -2 ; t₂ = -1
x² = -1 => x₁,₂ = ± i ∈ C ; x² = -2 => x₃,₄ = ± i√2 ∈ C
f) x⁴+4x²+3 = 0 ; x² = t ; x²+4t+3 = 0 ; a = 1 ; b = 4 ; c = 3
Δ = 16-12 = 4 ; √Δ = √4 = 2
t₁,₂ = (-4± 2)/2 => t₁ = -3 ; t₂ = -1
x² = -3 => x₁,₂ = ± i√3 ∈ C ; x² = -1 => x₃,₄ = ± i ∈ C
g) x⁴+7x²+12 = 0 ; x² = t ; t²+7t+12 = 0 ; a = 1 ; b = 7 ; c = 12
Δ = 49-48 = 1 ; √Δ = 1 ; t₁,₂ = (-7±1)/2 => t₁ = -4 ; t₂ = -3
x² = -4 => x₁,₂ = ±2i ∈ C ; x₃,₄ = ±i√3 ∈ C
h) x⁴ +11x²+30 = 0 ; x² = t ; t²+11t+30 = 0 ; a = 1 ; b = 11; c = 30
Δ = 121-120 = 1 ; √Δ = 1 ; t₁,₂ = (-11±1)/2 => t₁ = -6 ; t₂ = -5
x² = -6 => x₁,₂ = ± i√6 ∈ C ; x² = -5 => x₃,₄ = ± i√5 ∈ C
a) x⁴-6x²+25 = 0 ; x² = t ; t²-6t+25 = 0 , a = 1 ; b = -6 ; c = 25
Δ = 36-100 = -64 => √Δ = 8i ∈ C
t₁,₂ = (6±8i) /2 = 3±4i
x² = 3-4i => x₁,₂ = ± √(3-4i) ∈ C
x² = 3+4i => x₃,₄ = ±√(3+4i) ∈ C
b) x⁴ -16x²+100 = 0 ; x² = t => t²-16t+100 = 0
t₁,₂ = [16±√(256-400)]/2
t₁,₂ = 8±6i ∈ C
x₁,₂,₃,₄ = ±√(8±6i) ∈ C
c) x⁴-30x²+289 = 0 ; x² = t => t²-30t+289 = 0
t₁,₂ = [30±√(900-1156)]/2
t₁,₂ = 15±8i ∈ C
x₁,₂,₃,₄ = ±√(15±8i) ∈ C
d) x⁴-48x²+576 = 0 ; x² = t => t²-48t+576 = 0
t₁,₂ = [48±√(2304-2304)] / 2
t₁,₂ = 24
x² = 24 => x₁,₂ = x₃,₄ = ± √24 = ±2√6