Matematică, întrebare adresată de cynbcdyjvdrgb, 8 ani în urmă

Am nevoie de aceasta problema. Acele semne sunt facute de mine. M-am gandit ca pot rezolva cu asemanare.

Anexe:

Răspunsuri la întrebare

Răspuns de boiustef
5

Răspuns:

Explicație pas cu pas:

În rezolvare ne vom baza pe desenul tău (segmentul DC e în plus...).

Vom cerceta ΔABC și ABE.

ΔABC este isoscel, AB=AC. Atunci ∠B≡∠C.

ΔABE este tot isoscel, deoarece DE este mediatoare, atunci BE=AE (punctele situate pe mediatoarea unui segment,  sunt egal depărtate de capetele lui. Acest lucru ușor se poate demonstra din egalitatea triunghiurilor dreptunghice ADE și BDE, după egalitatea catetelor).

Atunci ∠B=∠BAE

În ΔABC, avem: m(∠A)+m(∠B)+m(∠C)=180°

În ΔABE, avem: m(∠BAE)+m(∠B)+m(∠E)=180°, deci

m(∠A)+m(∠B)+m(∠C)=m(∠BAE)+m(∠B)+m(∠E)

Din această egalitate dacă scădem perechile de unghiuri egale: m(∠B) și m(∠B), apoi m(∠C) și m(∠BAE), atunci obtinem  m(∠A)=m(∠E).

b) Aria ΔABC o vom afla după formula lui Heron, deoarece cunoaștem toate laturile:

Aria=\sqrt{p(p-a)(p-b)(p-c)}, unde p=(AB+AC+BC):2=18, atunci \\Aria=\sqrt{18*(18-13)*(18-13)*(18-10)} =\sqrt{18*5*5*8}=5*3*4=60cm^{2}\\

c) ΔABC≅ΔABE, asemenea dupa unghiuri egale

atunci \frac{AC}{EB}=\frac{BC}{BA} , \frac{13}{EB}=\frac{10}{13} , deci EB=\frac{13*13}{10} =\frac{169}{10} =16,9

Alte întrebări interesante