Am nevoie de ajutor la ex. A8 . Urgent!!!
Răspunsuri la întrebare
Răspuns:
Explicație pas cu pas:
a) 2ˣ⁻³ ≤ 4²ˣ <=> 2ˣ⁻³ ≤ (2²)²ˣ <=> 2ˣ⁻³ ≤ 2⁴ˣ =>
x-3 ≤ 4x => -3 ≤ 3x => -1 ≤ x =>
x ≥ -1
b) (1/2)³ˣ⁻² ≤ 8⁽ˣ⁻¹⁾ˣ¹⁽³ <=>
2⁽⁻¹⁾⁽³ˣ⁻²⁾ ≤ 2ˣ⁻¹ =>
2-3x ≤ x-1 => 3 ≤ 4x =>
x ≥ 3/4
c) 3²ˣ·9ˣ ≤ 81³⁻²ˣ <=> 3²ˣ·3²ˣ ≤ (3⁴)³⁻²ˣ <=>
3²ˣ⁺²ˣ ≤ 3⁴⁽³⁻²ˣ⁾ => 4x ≤ 12 - 8x => 12x ≤ 12 =>
x ≤ 1
d) [(1/27)¹⁽²]ˣ ·√3 > 1 <=>
3⁻³ˣ⁽² ·3¹⁽² > 3⁰ <=>
3⁻³ˣ⁽² ⁺¹⁽² > 3⁰ =>
-3x/2 + 1/2 > 0 <=>
-3x+1 > 0 => 1 > 3x =>
x < 1/3
e) (1/√8)ˣ ≥ 1/2 <=> (2⁻³⁽²)ˣ ≥ 1/2 <=>
2⁻³ˣ⁽² ≥ 2⁻¹ => -3x/2 ≥ -1 => -3x ≥ -2 =>
2 ≥ 3x =>
x ≤ 2/3
f) (0,2)³·5ˣ²⁻ˣ < 1/5 <=>
(2/10)³·5ˣ²⁻ˣ < 5⁻¹ <=>
5⁻³·5ˣ²⁻ˣ < 5⁻¹ <=>
5⁻³⁺ˣ²⁻ˣ < 5⁻¹ =>
x²-x-3 < -1 => x²-x-2 < 0
x²-x-2 = 0 =>
Δ = 1+8 = 9 => x₁,₂ = (1±3)/2 => x₁ = -1 ; x₂ = 2 =>
x ∈ (-1 ; 2)
g) 64√(0,25ˣ⁻⁷) > (0,5)⁻⁴ <=>
2⁶·(25/100)⁽ˣ⁻⁷⁾⁽² > (5/10)⁻⁴ <=>
2⁶·(1/4)⁽ˣ⁻⁷⁾⁽² > (1/2)⁻⁴ <=>
2⁶·2⁷⁻ˣ > 2⁴ I:2⁴ =>
2²⁺⁷⁻ˣ > 2⁰ => 9-x > 0 => 9> x =>
x < 9
h) (2√2)ˣ⁺ˣ² > (1/8)Iˣ⁻⁴I <=>
8⁽ˣ⁺ˣ²⁾⁽² > 8⁻Iˣ⁻⁴I =>
(x+x²)/2 > -Ix-4I =>
x+x² > -2Ix-4I
Ix-4I = x-4 , pentru x ≥ 4
4-x , pentru x < 4 =>
x+x² > -2(x-4) => x²+x > -2x+8 => x²+3x-8 > 0
x²+3x-8 = 0 => Δ = 9+32 = 41
x₁,₂ = (-3±√41)/2 => x ∈ [4 ; + ∞)
x+x² > -2(4-x) => x²+x > -8+2x => x²-x+8 > 0 =>
x ∈ (-∞ ; 4) =>
x ∈ R
i) 27·3Iˣ⁻²I⁻¹ < (1/3)⁻³ <=>
3³⁺Iˣ⁻²I⁻¹ < 3³ =>
Ix-2I < 1 => x ∈ (1; 3)
j) 5Iˣ²⁻³ˣ⁺²I < 25ˣ⁺¹ <=>
5Iˣ²⁻³ˣ⁺²I < 5²ˣ⁺² =>
Ix²-3x+2I < 2x+2
x²-3x+2 = 0 <=> (x-1)(x-2) = 0 =>
Ix²-3x+2I = x²-3x+2 , pentru x ∈ (-∞ ; 1] ∪ [2 ; +∞)
-x²+3x-2 , pentru x ∈ (1 ; 2)
x²-3x+2 < 2x+2 => x²-5x < 0 <=> x(x-5) < 0 =>
x ∈ (0 ; 5) => x ∈ (0 ; 1] ∪ [2 ; 5)
-x²+3x-2 < 2x+2 => x² -x +4 > 0 => x ∈ (1 ; 2) =>
=> Solutie : x ∈ (0 ; 5)