Matematică, întrebare adresată de neropuffyrex, 8 ani în urmă

Amplificati cu x-3 următoarele fracții algebrice:
a)
 \frac{7}{ { \times }^{2} }
b)
 \frac{x}{x + 1}
c)
 \frac{1 - x}{ {x}^{2} - 3x}
d)
 \frac{x - 3}{ {x}^{2} - 3x + 9}
va rog urgent,am nevoie azi

Răspunsuri la întrebare

Răspuns de pav38
48

Explicație pas cu pas:

Salutare!

 \bf \: a) \:  \dfrac{7}{ {x}^{2}}  = \dfrac{7 \cdot(x - 3)}{ {x}^{2}\cdot(x - 3)} = \dfrac{7x - 21}{ {x}^{3} - 3{x}^{2}}

 \bf \: b) \: \dfrac{x}{ x + 1} = \dfrac{x \cdot(x - 3)}{(x  - 3)\cdot(x  + 1)} = \dfrac{ {x}^{2}- 3x}{ {x}^{2}+ x- 3x - 3} =\dfrac{ {x}^{2}- 3x}{ {x}^{2}- 2x - 3}

 \bf \: c) \: \dfrac{1 - x}{ {x}^{2}   - 3x} = \dfrac{(1 - x) \cdot(x - 3)}{(x  - 3)\cdot({x}^{2} - 3x)} = \dfrac{4x-{x}^{2}-3}{{x}^{3} - 6{x}^{2} + 9x}

 \bf \: d) \: \dfrac{x- 3}{ {x}^{2}- 3x+9} = \dfrac{(x - 3) \cdot(x - 3)}{(x- 3)\cdot({x}^{2} - 3x+9)} = \dfrac{{x}^{2} - 6x+9}{{x}^{3} - 6{x}^{2} + 18x-27}

Alte întrebări interesante