Matematică, întrebare adresată de mariabibi1314, 9 ani în urmă

As dori si eu sa imi rezolvati exercitile de la 3 la 6!! Va rog frumoss!

Anexe:

Răspunsuri la întrebare

Răspuns de samsunggenius200
0
3. a)  7^{2}- 3^{2}+(- \sqrt{5}) ^{2}=49-9+ \sqrt{5}  ^{2} =40+5=45
b)  0^{100}+(- \sqrt{7}) ^{3}+ \sqrt{243}=0+(- \sqrt{7}) ^{3}+9 \sqrt{3} =- \sqrt{7} ^{3}+9 \sqrt{3} =- \sqrt{7 ^{3}}+9 \sqrt{3} =-7 \sqrt{7}+9 \sqrt{3}
c)  \sqrt{1.44}-(1.2) ^{2}= \sqrt{ \frac{36}{25} }-( \frac{6}{5}) ^{2} = \frac{6}{5}- \frac{36}{25}= \frac{30-36}{25}= \frac{-6}{25}=-\frac{6}{25}
d)  \sqrt{3 ^{2} +4 ^{2}  } - \sqrt{5 ^{2} }= \sqrt{9+16}-5= \sqrt{25}-5=5-5=0

4. a) [  \frac{3}{ \sqrt{3} }-(0.4+ \sqrt{3})]*10=[ \sqrt{3}-0.4- \sqrt{3}]*10=[-0.4]*10=    -[0.4*10]=-4
b) [-3 \sqrt{5}-( \frac{1}{2}-2 \sqrt{5})]*2= [-3 \sqrt{5}- \frac{1}{2}-2 \sqrt{5}]*2=[- \sqrt{5}- \frac{1}{2}]*2=      -2 \sqrt{5}- \frac{1}{2}*2=-2 \sqrt{5}-1
c)  \sqrt{( \sqrt{3}- \sqrt{2}) ^{2}   } -(\sqrt{3}- \sqrt{2})=\sqrt{3}- \sqrt{2}-\sqrt{3}+ \sqrt{2}=0

5. a)  2^{-1} + 3^{-1}= \frac{1}{2}+ \frac{1}{3}= \frac{3+2}{6}= \frac{5}{6}
b) (- \sqrt{2}) ^{-2}+( \sqrt{3}) ^{-2}=- \sqrt{2} ^{-2}+3 ^{-1}=2 ^{-1}+ \frac{1}{3}= \frac{1}{2}+ \frac{1}{3}= \frac{3+2}{6}= \frac{5}{6}
c)  \sqrt{27}*( \sqrt{3}) ^{-3}+1= \sqrt{27}\sqrt{3 ^{-3}}+1= \sqrt{27*3 ^{-3} }+1= \sqrt{ 3^{3} *3 ^{-3} }+1=       \sqrt{1}+1=1+1=2
d) [(2+3) ^{-1}+ \frac{1}{ \sqrt{5} }]:(1+ \sqrt{5})=[5 ^{-1}+ \frac{1}{ \sqrt{5} }]* \frac{1}{1+ \sqrt{5} }=[ \frac{1}{5}+\frac{1}{ \sqrt{5} }]* \frac{1}{1+ \sqrt{5} }=        \frac{ \sqrt{5}+5 }{5 \sqrt{5} }* \frac{1}{1+ \sqrt{5} }= \frac{( \sqrt{5}+5)*1  }{5 \sqrt{5}*(1+ \sqrt{5})  }= \frac{( \sqrt{5}+5)  }{5 \sqrt{5}*(1+ \sqrt{5})  }= \frac{( \sqrt{5}+5) \sqrt{5}   }{5 \sqrt{5}*(1+ \sqrt{5}) \sqrt{5}   }=    \frac{( \sqrt{5}+5) \sqrt{5} }{5 *5(1+ \sqrt{5})  }=\frac{( \sqrt{5}+5) \sqrt{5} }{25(1+ \sqrt{5})  }=\frac{5+5 \sqrt{5} }{25(1+ \sqrt{5})  }= \frac{5(1+  \sqrt{5})  }{{25(1+ \sqrt{5})  }}= \frac{1}{5}

6. a) 4-4(2 \sqrt{2}- \frac{4}{ \sqrt{2} })=4-4(2 \sqrt{2}- \frac{4 \sqrt{2} }{ 2})=4-4(2 \sqrt{2}-2 \sqrt{2})=      4-4*0=4-0=4
b) [- \sqrt{75}-4( \sqrt{3}-2 \sqrt{3})]:1 ^{50}=[-5 \sqrt{3}-4*(- \sqrt{3})]:1 =       -5 \sqrt{3}+4 \sqrt{3}=(-5+4) \sqrt3}=-1 \sqrt{3}=- \sqrt{3}
c) 5-5*[( \sqrt{6}+  \sqrt{3}): \sqrt{3}-  \sqrt{2}]=5-5[ \frac{ \sqrt{6}+  \sqrt{3} }{ \sqrt{3}   }- \sqrt{2}  ]=5- \frac{5( \sqrt{6}+  \sqrt{3})  }{ \sqrt{3}     } +5 \sqrt{2}=5- \frac{5 \sqrt{6}+5  \sqrt{3}  }{ \sqrt{3}     } +5 \sqrt{2}=5- \frac{(5 \sqrt{6}+5  \sqrt{3}) \sqrt{3}  }{3}+ 5\sqrt{2}=  5- \frac{5 \sqrt{18} +15 }{3}+5 \sqrt{2}=5- \frac{15 \sqrt{2} +15 }{3}+5 \sqrt{2}=5- \frac{3(5 \sqrt{2} +5) }{3}+5 \sqrt{2}=    5-(5 \sqrt{2}+5)+5 \sqrt{2}=5-5 \sqrt{2}-5+5 \sqrt{2}=0
Alte întrebări interesante