Având date două puncte A și B,să se construiască doar cu compasul mijlocul segmentului [AB].
Soluție:
Construind succesiv triunghiuri echilaterale de latură AB=r,vom obține simetricul A' al punctului față de B:
Într-un loc oarecare de pe foaie (sau chiar pe o altă foaie) construim două cercuri concentrice (O,r) și
(O,2r),folosind faptul că AA'=2r.Fie E,F €
(O,2r) două puncte oarecare cu EF=r.Construind (E,r) și (F,r) vom obține punctele de tangență ale acestor cercuri cu
(O,r),E' și F'.
Se poate arăta ușor că E'F'=
astfel că acum putem construi cercurile
și .Punctul de tangență al acestor cercuri este mijlocul segmentului [AB].
albatran:
mult prea complicat, ca de obicei la tine
imediat
Răspunsuri la întrebare
Răspuns de
6
rezolvarea clasica in atasament..
duci 2 cercuri de raze egale si mai mari decat jumatatea aproximata ochiometric (daca e mai mica, cercurile nu se vor intersecta), unul cu centrul in A, unul cu centrul in B
albatran
cercurilse vor intetrsecta in exact 2 puncte, aflate pe mediatoarea segmentului, care, ce sa vezi? va trece prin MIJLOCUL segmentului
Anexe:
Alte întrebări interesante
Limba română,
8 ani în urmă
Engleza,
8 ani în urmă
Chimie,
8 ani în urmă
Limba română,
8 ani în urmă
Chimie,
9 ani în urmă